• 제목/요약/키워드: e-coating

검색결과 593건 처리시간 0.027초

Development of Cr cold spray-coated fuel cladding with enhanced accident tolerance

  • Sevecek, Martin;Gurgen, Anil;Seshadri, Arunkumar;Che, Yifeng;Wagih, Malik;Phillips, Bren;Champagne, Victor;Shirvan, Koroush
    • Nuclear Engineering and Technology
    • /
    • 제50권2호
    • /
    • pp.229-236
    • /
    • 2018
  • Accident-tolerant fuels (ATFs) are currently of high interest to researchers in the nuclear industry and in governmental and international organizations. One widely studied accident-tolerant fuel concept is multilayer cladding (also known as coated cladding). This concept is based on a traditional Zr-based alloy (Zircaloy-4, M5, E110, ZIRLO etc.) serving as a substrate. Different protective materials are applied to the substrate surface by various techniques, thus enhancing the accident tolerance of the fuel. This study focuses on the results of testing of Zircaloy-4 coated with pure chromium metal using the cold spray (CS) technique. In comparison with other deposition methods, e.g., Physical vapor deposition (PVD), laser coating, or Chemical vapor deposition techniques (CVD), the CS technique is more cost efficient due to lower energy consumption and high deposition rates, making it more suitable for industry-scale production. The Cr-coated samples were tested at different conditions ($500^{\circ}C$ steam, $1200^{\circ}C$ steam, and Pressurized water reactor (PWR) pressurization test) and were precharacterized and postcharacterized by various techniques, such as scanning electron microscopy, Energy-dispersive X-ray spectroscopy (EDX), or nanoindentation; results are discussed. Results of the steady-state fuel performance simulations using the Bison code predicted the concept's feasibility. It is concluded that CS Cr coating has high potential benefits but requires further optimization and out-of-pile and in-pile testing.

용융 Zn 합금에서 Fe합금의 PTA 오버레이 용접 금속간 상의 형성과 진행 (Formation and Progression of Intermetallic phase on Iron Base Alloy PTA weld overlay in Molten Zn Alloys)

  • ;백응률
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2009년 추계학술발표대회
    • /
    • pp.95-95
    • /
    • 2009
  • Zinc coatings provide the most effective and economical way of protecting steel against corrosion. There are three types of galvanizing lines typically used in production line in galvanizing industries,Galvanize (GI) coating (Zn-0.1-0.3%Al), Galfan coating (Zn-5%Al), Galvalume(GL) coating (45%Zn-Al). In continuous Galvanizing lines, the immersed bath hardware (e.g. bearings, sink, stabilizer, and corrector rolls, and also support roll arms and snout tip) are subjected to corrosion and wear failure. Understanding the reaction of these materials with the molten Zn alloy is becomes scientific and commercial interest. To investigate the reaction with molten Zn alloys, static immersion test performed for 4, 8, 16, and 24 Hr. Two different baths used for the static immersion, which are molten Zn and molten Zn-55%Al. Microstructures characterization of each of the materials and intermetallic layer formed in the reaction zone was performed using optical microscope, SEM and EDS. The thickness of the reaction layer is examined using image analysis to determine the kinetics of the reaction. The phase dominated by two distinct phase which are eutectic carbide and matrix. The morphology of the intermetallic phase formed by molten Zn is discrete phase showing high dissolution of the material, and the intermetallic phase formed by Zn-55wt%Al is continuous. Aluminum reacts readily with the materials compare to Zinc, forming iron aluminide intermetallic layer ($Fe_2Al_5$) at the interface and leaving zinc behind.

  • PDF

Chitosan/hydroxyapatite composite coatings on porous Ti6Al4V titanium implants: in vitro and in vivo studies

  • Zhang, Ting;Zhang, Xinwei;Mao, Mengyun;Li, Jiayi;Wei, Ting;Sun, Huiqiang
    • Journal of Periodontal and Implant Science
    • /
    • 제50권6호
    • /
    • pp.392-405
    • /
    • 2020
  • Purpose: Titanium implants are widely used in the treatment of dentition defects; however, due to problems such as osseointegration failure, peri-implant bone resorption, and periimplant inflammation, their application is subject to certain restrictions. The surface modification of titanium implants can improve the implant success rate and meet the needs of clinical applications. The goal of this study was to evaluate the effect of the use of porous titanium with a chitosan/hydroxyapatite coating on osseointegration. Methods: Titanium implants with a dense core and a porous outer structure were prepared using a computer-aided design model and selective laser sintering technology, with a fabricated chitosan/hydroxyapatite composite coating on their surfaces. In vivo and in vitro experiments were used to assess osteogenesis. Results: The quasi-elastic gradient and compressive strength of porous titanium implants were observed to decrease as the porosity increased. The in vitro experiments demonstrated that, the porous titanium implants had no biological toxicity; additionally, the porous structure was shown to be superior to dense titanium with regard to facilitating the adhesion and proliferation of osteoblast-like MC3T3-E1 cells. The in vivo experimental results also showed that the porous structure was beneficial, as bone tissue could grow into the pores, thereby exhibiting good osseointegration. Conclusions: Porous titanium with a chitosan/hydroxyapatite coating promoted MC3T3-E1 cell proliferation and differentiation, and also improved osseointegration in vitro. This study has meaningful implications for research into ways of improving the surface structures of implants and promoting implant osseointegration.

Mechanical Properties of Chemical-Vapor-Deposited Silicon Carbide using a Nanoindentation Technique

  • Kim, Jong-Ho;Lee, Hyeon-Keun;Park, Ji-Yeon;Kim, Weon-Ju;Kim, Do-Kyung
    • 한국세라믹학회지
    • /
    • 제45권9호
    • /
    • pp.518-523
    • /
    • 2008
  • The mechanical properties of silicon carbide deposited by chemical vapor deposition process onto a graphite substrate are studied using nanoindentation techniques. The silicon carbide coating was fabricated in a chemical vapor deposition process with different microstructures and thicknesses. A nanoindentation technique is preferred because it provides a reliable means to measure the mechanical properties with continuous load-displacement recording. Thus, a detailed nanoindentation study of silicon carbide coatings on graphite structures was conducted using a specialized specimen preparation technique. The mechanical properties of the modulus, hardness and toughness were characterized. Silicon carbide deposited at $1300^{\circ}C$ has the following values: E=316 GPa, H=29 GPa, and $K_c$=9.8 MPa $m^{1/2}$; additionally, silicon carbide deposited at $1350^{\circ}C$ shows E=283 GPa, H=23 GPa, and $K_c$=6.1 MPa $m^{1/2}$. The mechanical properties of two grades of SiC coating with different microstructures and thicknesses are discussed.

Jellison Modine 분산식을 이용한 ZnS의 광학상수 결정 (Determination of Optical Constants of ZnS Using Jellison-Modine Dispersion Relation)

  • 박명희
    • 한국안광학회지
    • /
    • 제12권1호
    • /
    • pp.85-90
    • /
    • 2007
  • 안경렌즈의 무반사 코팅물질로 사용되는 황화아연(Zinc Sulphide : ZnS)의 단일박막을 실리콘과 슬라이드 유리 기판위에 스핀코팅방법으로 증착하였다. 박막 증착 후 변입사각분광타원계(VASE : Variable Angle Spectroscopic Ellipsometer)를 사용하여 1.5~5.0 eV 광 에너지 영역에서 타원 각(ellipsometry angle) ${\Delta}$, ${\Psi}$를 측정하였다. 이 측정결과들을 Jellison Modine 분산관계식을 사용하여 최적맞춤하고, 매개변수들을 구하여 박막의 광학상수인 굴절계수 $n({\lambda})$와 소광계수 $k({\lambda})$를 결정하였다.

  • PDF

The Applications of Sol-Gel Derived Tin Oxide Thin Films

  • Park, Sung-Soon;John D. Mackenzie
    • The Korean Journal of Ceramics
    • /
    • 제2권1호
    • /
    • pp.1-10
    • /
    • 1996
  • Transparent conducting $SnO_2$-based thin films have been coated on float substrates such as fused quartz, and ceramic fiber cloths such as the Nexel and E-glass cloth from tin alkoxides by the sol-gel technique. Also, thin films of alternating layers of $SnO_2$ and $SiO_2$ have been fabricated by dip coating. The sheet resistance and average visible transmittance of the films were investigated in the aspect of the applications as transparent electrodes such as liquid crystal displays, photo-detectors and solar cells. The Nextel and E-glass cloths coated with antimony-doped tin oxide (ATO) had sheet resistance of as low as $20 \;ohm/{\Box}$ and $120ohm/\;{\Box}$, respectively. The promotion effects of additives as $La_2O_3$ and Pt on the ethanol gas sensing properties of the films were investigated in the aspects of the applications as an alcohol sensor and a breath alcohol checker. Possible evidence of quantum well effects in the oxide multilayers of $SnO_2$ and $SiO_2$ was investigated.

  • PDF

고품위 페라이트 본드자석 제조에 관한 연구 (A Study on the Fabrication for High Quality Ferrite Plastic Magnets)

  • 신용진;문형욱;진성빈;정왕일
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제10권5호
    • /
    • pp.440-446
    • /
    • 1997
  • This research has been performed for the fabrication of high quality ferrite plastic magnet. The magnetic properties of S $r_{5.9}$F $e_2$ $O_3$ ferrite bonded magnets by injection moulding with a variety of applied magnetic field were investigated. 0.3wt% CaCO3, 0.2wt% $SiO_2$, 0.5wt% $Al_2$ $O_3$and 0.5wt% N $a_2$ $SiO_3$are added in order to improve the magnetic properties of Sr-ferrite plastic magnets during the powder fabrication. For carbon coating on chemical compound specimen, 5wt% polyvinyl alcohol is added, and then calcinated under $N_2$ environment of 12$25^{\circ}C$. The particle size is distributed from 0.9~1.2${\mu}{\textrm}{m}$ which approximates to the single domain. The obtained Sr ferrite powder is well mixed with silane coupling and calcium stearate of 1wt%. Nest, the specimen is pelleted after kneading each of them with polyamidel2 as a binder. When the temperature of injection and mould were 25$0^{\circ}C$ and 8$0^{\circ}C$ respectively at injection pressure of 200kgf/$\textrm{cm}^2$, the degree of orientation was 85.3% under the applied magnetic field of 12kOe. As the results, when the packing density of Sr ferrite powder was 90wt%, the magnetic properties of Sr ferrite bonded magnet were follows : $_{B}$ $H_{c}$=2.41kOe, Br=3.1kG, (BH)$_{max}$=2.21MgOe. Especially, the Sr-ferrite bonded magnet with 10wt% N $d_2$F $e_{14}$B additive were as follows : $_{B}$ $H_{c}$=2.57kOe, Br=3.14kG and (BH)$_{max}$=2.39MGOe.GOe.GOe.GOe.e.

  • PDF

이중 코팅된 압착 펠렛으로부터 3종 영양소의 방출 제어 (Controlled Release of Three Nutrients from Dual-layered Coated Compact Pellets)

  • 박종수;이응석;최윤재;이범진
    • Journal of Pharmaceutical Investigation
    • /
    • 제38권3호
    • /
    • pp.177-182
    • /
    • 2008
  • The purposes of this study were to prepare dual-layered coated compact pellets containing three nutrients Glucose, Chromium picolinate, Vitamin C) for rumen bypass. The core compact pellets were prepared by an extrusionspheronization method and then double layered coated with pH independent EC (ethyl cellulose) and pH-dependent polymers ($Eudragit^{(R)}$ E100) using a fluid-bed spray coater. Depending on the coating levels of EC and $Eudragit^{(R)}$ E100, release profiles were variable in simulated rumen (pH 6.8) and abomasums (pH 2.0) fluid using USP apparatus I (basket method). When compact pellets were coated with EC (about 10% level in inner layer) and then $Eudragit^{(R)}$ E100 (20% level in outer layer) in a dual-layered manner, rumen-bypass delivery resisting rumen fluid followed by release in abomasums fluid could possible. The friability was also satisfactory based on chewing behavior of ruminants. The dual-layered coated compact pellets showed smooth surface and distinct inner/outer layers using scanning electron microscopy (SEM). The current rumen bypass delivery system can be also applicable to deliver other nutrients in ruminants.

Superhydrophobic nanostructured non-woven fabric using plasma modification

  • Shin, Bong-Su;Lee, Kwang-Reoul;Kim, Ho-Young;Moon, Myoung-Woon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.320-320
    • /
    • 2011
  • We describe fabrication of superhydrophobic surface on non-woven fabric (NWF) having nano-hairy structures and a hydrophobic surface coating. Oxygen plasma was irradiated on NWF for nano-texuring and a precursor of HMDSO (Hexamethydisiloxane) was introduced as a surface chemical modification for obtaining superhydrophobicity using 13.56 MHz radio frequency-Plasma Enhanced Chemical Vapor Deposition (rf-PECVD). O2 plasma treatment time was varied from 1 min to 60 min at a bias voltage of 400V, which fabricated pillar-like structures with diameter of 30 nm and height of 150 nm on NWF. Subsequently, hydrophobic coating using hexamethyldisiloxane vapor was deposited with 10 nm thickness on NWF substrate at a bias voltage of 400 V. We evaluate superhydrophobicity of the modified NWF with sessile drop using goniometer and high speed camera, in which aspect ratio of nanohairy structures, contact angle and contact angle hysteresis of the surfaces were measured. With the increase of aspect ratio, the wetting angle increased from $103^{\circ}$ to $163^{\circ}$, and the contact angle hysteresis decreased dramatically below $5^{\circ}$. In addition, we had conducted experiment for nucleation and condensation of water via E-SEM. During increasing vapor pressure inside E-SEM from 3.7 Torr to over 6 Torr which is beyond saturation point at $2^{\circ}C$, we observed condensation of water droplet on the superhydropobic NWF. While the condensation of water on oxygen plasma treated NWF (superhydrophilic) occurred easily and rapidly, superhydrophobic NWF which was fabricated by oxygen and HMDSO was hardly wet even under supersaturation condition. From the result of wetting experiment and water condensation via E-SEM, it is confirmed that superhydrophobic NWF shows the grate water repellent abilities.

  • PDF

도막의 열화인자 차단 효과를 고려한 콘크리트 탄산화 깊이에 관한 연구 (Concrete Carbonation Considering the Protective Performance of Concrete Coating)

  • 박동천;김정진;조봉석;박재홍;전봉민;오상균
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 춘계 학술발표회 제20권1호
    • /
    • pp.501-504
    • /
    • 2008
  • 도막을 통한 이산화탄소의 확산과 수산화칼슘과의 반응을 고려한 콘크리트 탄산화 모델을 구축하여, 촉진 탄산화 실험을 통해 모델의 타당성을 확인하였다. 일련의 실험과 모델화, 수치해석을 통해 아래와 같은 결론을 얻을 수 있었다. 1) 확산 투과 이론에 근거한 도막의 평가값을 비정상 확산-반응 탄산화 해석의 입력조건으로 이용함으로써 도막의 중성화 억제효과를 높은 정확도로 예측할 수 있었다. 2) 확산-반응 탄산화모델과 실험결과의 감도해석을 통해 수산화칼슘 확산계수는 1e-12($m^2/s$)에서, 탄산화반응 속도는 5e-5($m^3/mol/s$)에서 높은 상관성을 나타내었다.

  • PDF