• Title/Summary/Keyword: e-Science Grid

Search Result 140, Processing Time 0.025 seconds

An Integrated Access Control for Sharing of E-Science Grid Resources (유휴 멀티 e-Science 그리드 자원 공유를 위한 통합 자원 접근 제어)

  • Jung, Im-Y.;Jung, Eun-Jin;Yeom, Heon-Y.
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.9_10
    • /
    • pp.452-465
    • /
    • 2008
  • This paper proposes a light-weight, seamless integrated access control for global e-Science resource sharing. E-Science, based on Grid Computing, was designed to help scientists to remotely control and process the Grid resources such as high-end equipments and remote machines. As many researchers engage in the e-Science Grids, the researchers in a grid often have to wait for or give up use of the Grid resources, even when there are idle resources in other Grids. In this case, provided that proper compensation is given, Grid resource sharing is helpful both for the researchers and the Grids which provide their resources. But, sharing Grid resources globally is not simple, as each e-Science Grid is especially designed for resource sharing in its Virtual Organization(VO) and already has its unique access control policy for its resources. This paper proposes a new integrated access control for e-Science Grid resource sharing. The access control is light-weight without any priori service level agreement(SLA)s among the Grids which share their resources and seamless because the users can use the resources shared as the ones belonging to their Grids without their additional registration to the other Grids.

A Light-weight, Adaptive, Reliable Processing Integrity Audit for e-Science Grid (e-Science 그리드를 위한 가볍고, 적응성있고, 신뢰성있는 처리 무결성 감사)

  • Jung, Im-Young;Jung, Eun-Jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.5
    • /
    • pp.181-188
    • /
    • 2008
  • E-Science Grid is designed to cope with computation-intensive tasks and to manage a huge volume of science data efficiently. However, certain tasks may involve more than one grid can offer in computation capability or incur a long wait time on other tasks. Resource sharing among Grids can solve this problem with proper processing-integrity check via audit. Due to their computing-intensive nature, the processing time of e-Science tasks tends to be long. This potential long wait before an audit failure encourages earlier audit mechanism during execution in order both to prevent resource waste and to detect any problem fast. In this paper, we propose a Light-weight, Adaptive and Reliable Audit, LARA, of processing Integrity for e-Science applications. With the LARA scheme. researchers can verify their processing earlier and fast.

Optimized Security Algorithm for IEC 61850 based Power Utility System

  • Yang, Hyo-Sik;Kim, Sang-Sig;Jang, Hyuk-Soo
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.3
    • /
    • pp.443-450
    • /
    • 2012
  • As power grids are integrated into one big umbrella (i.e., Smart Grid), communication network plays a key role in reliable and stable operation of power grids. For successful operation of smart grid, interoperability and security issues must be resolved. Security means providing network system integrity, authentication, and confidentiality service. For a cyber-attack to a power grid system, which may jeopardize the national security, vulnerability of communication infrastructure has a serious impact on the power grid network. While security aspects of power grid network have been studied much, security mechanisms are rarely adopted in power gird communication network. For security issues, strict timing requirements are defined in IEC 61850 for mission critical messages (i.e., GOOSE). In this paper, we apply security algorithms (i.e., MD-5, SHA-1, and RSA) and measure their processing time and transmission delay of secured mission critical messages. The results show the algorithms satisfying the timing requirements defined in IEC 61850 and we observer the algorithm that is optimal for secure communication of mission critical messages. Numerical analysis shows that SHA-1 is preferable for secure GOOSE message sending.

Review on Integration of Smart Grid into Smart City (스마트 그리드(스마트 에너지)의 스마트 시티에의 통합에 대한 문헌 연구)

  • Sim, Min Kyu
    • The Journal of Society for e-Business Studies
    • /
    • v.25 no.1
    • /
    • pp.35-43
    • /
    • 2020
  • Smart grid aims to achieve efficient energy-related operations. Smart grid will become a central component of Smart city that aims to improve citizens' quality of life. This paper validates that smart grid at matured state is the state where smart grid is naturally integrated into smart grid. Also, this paper describes smart grid as an essential element of smart city. This paper discusses necessary social infrastructure and investigates necessary technological features.

Grid Middleware Support for e-Science Service Integration Workbench (e-Science 서비스 통합 워크벤치를 위한 그리드 미들웨어 지원)

  • Suh, Young-Kyoon;Kim, Byungsang;Nam, Dukyun;Lee, June Hawk;Hwang, Soonwook
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.574-577
    • /
    • 2007
  • e-Science Service Integration Workbench is the core tool that enables IT-based computation and engineering researchers to collaborate their research activities via data sharing, by semi-automatically supporting the activities. Workbench provides the researchers with a scientific workflow by establishing the environment that is capable of finding, registering, composing, and executing services-legacy codes wrapped with grid services or web services-they need to use. In other words, designing their scientific workflow through the workbench, they can receive or share its final result with their collegues by submitting jobs they describe to computational resources such as supercomputers or grids or requesting an experiment. In this paper, we propose an implementation architecture of e-Science Service Integration Workbench to support grid services of Grid Middleware.

  • PDF

e-Science Technologies in Synchrotron Radiation Beamline - Remote Access and Automation (A Case Study for High Throughput Protein Crystallography)

  • Wang Xiao Dong;Gleaves Michael;Meredith David;Allan Rob;Nave Colin
    • Macromolecular Research
    • /
    • v.14 no.2
    • /
    • pp.140-145
    • /
    • 2006
  • E-science refers to the large-scale science that will increasingly be carried out through distributed global collaborations enabled by the Internet. The Grid is a service-oriented architecture proposed to provide access to very large data collections, very large scale computing resources and remote facilities. Web services, which are server applications, enable online access to service providers. Web portal interfaces can further hide the complexity of accessing facility's services. The main use of synchrotron radiation (SR) facilities by protein crystallographers is to collect the best possible diffraction data for reasonably well defined problems. Significant effort is therefore being made throughout the world to automate SR protein crystallography facilities so scientists can achieve high throughput, even if they are not expert in all the techniques. By applying the above technologies, the e-HTPX project, a distributed computing infrastructure, was designed to help scientists remotely plan, initiate and monitor experiments for protein crystallographic structure determination. A description of both the hardware and control software is given together in this paper.

An Efficient Transaction Management on HVEM DataGrid (HVEM 데이터그리드 상의 효율적인 트랜잭션 관리)

  • Jung, Im Y.;Kim, Eunsung;Choi, Hyung Jun;Yeom, Heon Y.
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2007.11a
    • /
    • pp.637-639
    • /
    • 2007
  • HVEM DataGrid[1]는 연구자들이 초고압 전자현미경(HVEM-High Voltage Electron Microscope)을 이용한 실험 결과를 효율적으로 관리하고 공유하기 위한 공간이다. 여러 사람들이 동시에 이용하는 시스템으로 이종 저장소(heterogeneous storage)들을 포함할 수 있는 HVEM DataGrid 는 HVEM 실험결과를 이들의 메타정보와 같이 동기적으로 저장해야 한다. 이런 HVEM DataGrid 의 특성을 고려한 트랜잭션 관리는 트랜잭션의 ACID 성질을 만족하는 동시에 용량이 큰 e-Science 결과물을 효율적으로 다룰 수 있는 방안이 또한 필요하다. 따라서, 본 논문은 HVEM DataGrid 의 이종 저장소에 걸친 트랜잭션에 대한 효율적인 관리 방안을 제안한다.

The e-Science collaborative research environment using the Cactus and the GridSphere (Cactus와 GridSphere를 이용한 e-Science 협업 연구 환경)

  • Na Jeoung-Su;Cho Kum Won;Song Young Duck;Kim Young Gyun;Ko Soon-Heum
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.35-40
    • /
    • 2005
  • Up to recently, with the improvement of a computer power and high speed of network technology, advanced countries have researched a construction of the e-Science environment. As a major application part, a construction for environment of CFD, also, have studied together. During the research, people realize that not sharing hardware but also appropriate software development is really important to realize the environment. This paper describes about a construction of a collaborative research environment in the KISTI: Clients can connect to the computing resources through the web portal, run the Cactus simulation.: According to the computing resources, the simulation can migrate to some site to find better computing power.: Result of the calculation visualize at the web portal directly so that researchers of remote site can be share and analyze the result collaborative ways.

  • PDF

e-Government Grid System for Information Interoperability (정보 상호운용을 위한 전자정부 그리드 시스템)

  • Kook, Youn-Gyou;Lee, Joon;Kim, Jae-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3660-3667
    • /
    • 2009
  • Currently operated many information systems are faced up with various difficulties to exchange data and to cooperate between different systems because the factors, such as data exchangibility and system interoperability, are not considered during the system development from scratch. To overcome these problems, we attempt to apply e-Government Grid to resolve the heterogeneity of systems and propose Government Information Metadata Registry (GIMDR) for assurance of interoperability of distributed and independent information systems in e-government environments. Consequently, the case study is introduced to provide the seamless connection between distributed systems. The proposed e-Government Grid and GIMDR are expected to reduce the heterogeneity of the distributed systems for interoperability, as well as increase the accessability and transparency of cooperating information.

Effects of Rectifier and Copper Grid Interference on the Detection Reliability of Coating Flaws on Buried Pipes (매설 배관 피복 결함 탐상 정확도에 미치는 인접 정류기 및 접지 구리망 간섭의 영향)

  • Kim, M.G.;Lim, B.T.;Kim, K.T.;Chang, H.Y.;Park, H.B.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.211-223
    • /
    • 2020
  • The external corrosion of buried piping can be controlled using both coating and cathodic protection. Several factors are involved in the damage and deterioration of the coating on pipes. There are many detection methods for coating defects on pipes and the direct current voltage gradient (DCVG) method is one of the most powerful methods. However, the detection reliability of DCVG can be affected by interferences such as stray current, metal objects connected to rectifiers, and copper grids. Therefore, this study focused on the interference effects of rectifiers and a copper grid on the reliability of coating flaw detection. As the length of the interference pipe connected to the rectifier increased, the reliability decreased. In contrast, as the distance between the pipe and the copper grid increased, the reliability of the coating flaw detection increased. The detection results produced by the DCVG method were discussed using current and potential simulations for a pipe with a rectifier and copper grid interference in the soil.