• 제목/요약/키워드: dynamics simulation model

검색결과 1,943건 처리시간 0.023초

DEVELOPMENT OF MATDYMO (MULTI-AGENT FOR TRAFFIC SIMULATION WITH VEHICLE DYNAMICS MODEL) I: DEVELOPMENT OF TRAFFIC ENVIRONMENT

  • CHOI K. Y.;KWON S. J.;SUH M. W.
    • International Journal of Automotive Technology
    • /
    • 제7권1호
    • /
    • pp.25-34
    • /
    • 2006
  • For decades, simulation technique has been well validated in areas such as computer and communication systems. Recently, the technique has been much used in the area of transportation and traffic forecasting. Several methods have been proposed for investigating complex traffic flows. However, the dynamics of vehicles and diversities of driver characteristics have never been considered sufficiently in these methods, although they are considered important factors in traffic flow analysis. In this paper, we propose a traffic simulation tool called Multi-Agent for Traffic Simulation with Vehicle Dynamics Model (MATDYMO). Road transport consultants, traffic engineers and urban traffic control center managers are expected to use MATDYMO to efficiently simulate traffic flow. MATDYMO has four sub systems: the road management system, the vehicle motion control system, the driver management system, and the integration control system. The road management system simulates traffic flow for various traffic environments (e.g., multi-lane roads, nodes, virtual lanes, and signals); the vehicle motion control system constructs the vehicle agent by using various vehicle dynamic models; the driver management system constructs the driver agent capable of having different driving styles; and lastly, the integrated control system regulates the MATDYMO as a whole and observes the agents running in the system. The vehicle motion control system and driver management system are described in the companion paper. An interrupted and uninterrupted flow model were simulated, and the simulation results were verified by comparing them with the results from a commercial software, TRANSYT-7F. The simulation result of the uninterrupted flow model showed that the driver agent displayed human-like behavior ranging from slow and careful driving to fast and aggressive driving. The simulation of the interrupted flow model was implemented as two cases. The first case analyzed traffic flow as the traffic signals changed at different intervals and as the turning traffic volume changed. Second case analyzed the traffic flow as the traffic signals changed at different intervals and as the road length changed. The simulation results of the interrupted flow model showed that the close relationship between traffic state change and traffic signal interval.

복잡한 조직에서의 의사결정과 학습 -쓰레기통 모형(Garbage Can Model)의 학습 적용- (Decision Making and Learning in Complex Organization : Learning Approach of Garbage Can Model)

  • 오영민;정경호
    • 한국시스템다이내믹스연구
    • /
    • 제9권1호
    • /
    • pp.57-71
    • /
    • 2008
  • This research paper describes a complex and vague settings in which organization makes a decision and explains a role of decision maker's learning process. The original paper, written by Cohen, March, Olsen in 1972, said that all members of organization depended on the technology taken through trials and errors, which is the 'learning' process literally. But they intended to exclude the learning process in their simulation model because their PORTRAN model couldn't replicate the learning concept. As a result, they couldn't explain how all agents of garbage can simulation model resolve the problem dynamically. To overcome this original paper's limitations, we try to rebuild a learning process simulation model using by system dynamics approach that can capture the linkage between organization leanings and agents-based decision-makings. Our learning simulation results reveal two points. First, decision maker's leanings process improves the efficiency of decision making in complex situation. Second, group learning shows a superior efficiency to an individual learning because group members share organizational memory and energy.

  • PDF

탄소세 부과에 따른 국내 에너지-경제-환경(3E) 변화 분석 및 예측을 위한 시스템다이내믹스 모델 개발 (System Dynamics Model for Analyzing and Forecasting the National Energy-Economy-Environment(3E) Changes under Levying of Carbon Tax)

  • 송재호;정석재;김경섭;박진원
    • 한국시스템다이내믹스연구
    • /
    • 제7권2호
    • /
    • pp.149-170
    • /
    • 2006
  • In this paper, an energy-economy-environment dynamic simulation model was developed to using system dynamics methodology. It describes current energy-economy-environment systems and forecasts changes caused by levying of carbon tax. The model is composed of three modules: an energy module, an economic module and an environmental module. Variables are interrelated in each module, and three modules are linked by several linkage variables. Setting up the linkage variables is an important factor for the composition of the model. The simulation result shows a change of the national GDP, usage of energy, and $CO_2$ emissions under levying and reinvestment of carbon tax considering various scenarios for the charging cost.

  • PDF

물수제비 시뮬레이션을 위한 개선된 동역학 모델 (An Improved Dynamics Model for Stone Skipping Simulation)

  • 이남경;백낙훈
    • 한국멀티미디어학회논문지
    • /
    • 제13권9호
    • /
    • pp.1382-1390
    • /
    • 2010
  • 우리는 일상에서 유체와 강체 사이에서 일어나는 상호작용을 흔히 볼 수 있다. 하지만 이를 시뮬레이션하는 것은 많은 계산량이 필요한 어려운 작업이다. 본 논문에서는 유체와 강체 사이의 상호작용 현상 중 하나인 물수제비 현상을 실시간으로 시뮬레이션 할 수 있는 역학적 모델을 제안한다. 이를 위해 실시간에 계산 가능하면서도 이전 연구에서 고려하지 않았던 돌멩이의 회전운동을 포함하는 개선된 역학적 모델을 사용하며 공기와의 마찰로 생기는 힘들도 포함한 수식을 제안한다. 제안하는 모델을 사용하면 사용자의 다양한 입력에 대해 사실적인 물수제비 현상을 시뮬레이션 할 수 있다. 또한 이전 결과에 비해 보다 원에 가까운 파장을 만들면서 실시간 처리가 가능한 수면 모델도 제시한다. 본 논문에서 제안하는 방법은 상호작용 역학 시스템이나 게임 엔진들에 쉽게 적용할 수 있다.

당뇨병 환자의 혈당 변동에 대한 시스템다이내믹스 모델 개발 (Development of System Dynamics Model for the Variation of Plasma Glucose Levels in Patients with Type 2 Diabetes)

  • 최은옥;곽찬영
    • 한국시스템다이내믹스연구
    • /
    • 제9권1호
    • /
    • pp.155-170
    • /
    • 2008
  • The purpose of this study was to develop a system dynamics model for management of glucose metabolism disorders that demonstrated dynamic relationships between insulin and plasma glucose levels over the time. The model was developed to 1) represent the physiology of glucose metabolism for an normal adult subject, 2) to draw causal loop diagram that demonstrate feedback systems of glucose regulation in normal condition and pathologic condition of the type 2 diabetes, 3) to develop an interactive computer simulation model for management of glucose metabolism disorders. The simulation results showed the plasma glucose level for normal persons varied from 75 to 140 which was consistent with clinical findings. As an example for patients we selected a case which varied from 110 to 310. Two types of interventions were chosen to review the model; meal control and insulin administration. The simulation results for those cases also matched well with clinical findings. The developed model can be used as an effective educational tool for patients to develop healthy lifestyle choices. The results also provide a blueprint for health providers to maintain normal blood glucose levels in diabetes patients.

  • PDF

조직간 협력의 조건이 공동목표 달성에 미치는 영향 분석과 시뮬레이션 모델에 관한 연구 (Effect Analysis of the Inter-Organizational Cooperation on the Achievement level of Jointed Goal and Its Simulation Model)

  • 최남희
    • 한국시스템다이내믹스연구
    • /
    • 제2권1호
    • /
    • pp.93-112
    • /
    • 2001
  • Inter-Organizational Cooperation is the most common and important strategy in modern public and privet sectors managerial activities. In this paper the concepts of inter-organizational cooperation means not selfish cooperation as in the game circumstance and theory, but general collaborative action between organizations, they have share same goal. The achievement level of jointed-goal of inter-organization is depended upon the performance of cooperation, which resulted from the conditions and circumstances of cooperation. This paper analyses the effect of inter-organizational cooperation on achievement level of the jointed goal between two organizations with computer simulation model of the system dynamics approach. In the computer simulation model, three factors, goal perception, communication, and control, are considered as a key conditions of cooperation, which impact on the performance of cooperation. Simulation model was constructed with focus on the dynamic interactions between these three factors and the achievement level of jointed-goal. Consequently, the results found in this paper may provide further grounds for reducing the time delay that included in the conditions of cooperation.

  • PDF

Numerical Simulation of Turbulence-Induced Flocculation and Sedimentation in a Flocculant-Aided Sediment Retention Pond

  • Lee, Byung Joon;Molz, Fred
    • Environmental Engineering Research
    • /
    • 제19권2호
    • /
    • pp.165-174
    • /
    • 2014
  • A model combining multi-dimensional discretized population balance equations with a computational fluid dynamics simulation (CFD-DPBE model) was developed and applied to simulate turbulent flocculation and sedimentation processes in sediment retention basins. Computation fluid dynamics and the discretized population balance equations were solved to generate steady state flow field data and simulate flocculation and sedimentation processes in a sequential manner. Up-to-date numerical algorithms, such as operator splitting and LeVeque flux-corrected upwind schemes, were applied to cope with the computational demands caused by complexity and nonlinearity of the population balance equations and the instability caused by advection-dominated transport. In a modeling and simulation study with a two-dimensional simplified pond system, applicability of the CFD-DPBE model was demonstrated by tracking mass balances and floc size evolutions and by examining particle/floc size and solid concentration distributions. Thus, the CFD-DPBE model may be used as a valuable simulation tool for natural and engineered flocculation and sedimentation systems as well as for flocculant-aided sediment retention ponds.

전력산업 인력수급 예측모형 개발 연구 (The Study on the Human Resource Forecasting Model Development for Electric Power Industry)

  • 이용석;이근준;곽상만
    • 한국시스템다이내믹스연구
    • /
    • 제7권1호
    • /
    • pp.67-90
    • /
    • 2006
  • A series of system dynamics model was developed for forecasting demand and supply of human resource in the electricity industry. To forecast demand of human resource in the electric power industry, BLS (Bureau of Labor Statistics) methodology was used. To forecast supply of human resource in the electric power industry, forecasting on the population of our country and the number of students in the department of electrical engineering were performed. After performing computer simulation with developed system dynamics model, it is discovered that the shortage of human resource in the electric power industry will be 3,000 persons per year from 2006 to 2015, and more than a double of current budget is required to overcome this shortage of human resource.

  • PDF

Agent Based Modeling 기법을 활용한 시스템다이내믹스 모델링

  • 전소연;이혜준;곽상만
    • 한국시스템다이내믹스학회:학술대회논문집
    • /
    • 한국시스템다이내믹스학회 2006년도 춘계학술대회 발표논문집
    • /
    • pp.19-40
    • /
    • 2006
  • A system dynamics model is developed to investigate the applicability of the agent based modeling concept in the system dynamics model. The assumed problem is to forecast the size and structure of the organization with the developing market environment. The agent based modeling concept is applied to the organization part, and the other parts of the model such as market, facilities, etc. are developed with the traditional system dynamics technique. The simulation results show the agent based modeling part can be combined with the traditional system dynamics modeling with more precisions. However, the complexity increases and the simulation times are longer than those of the traditional method.

  • PDF

캠 형상 최적설계를 위한 밸브 트레인 동특성 해석 모델 (A simulation model of valve train dynamics for cam profile optimizations)

  • 김도중
    • 오토저널
    • /
    • 제15권2호
    • /
    • pp.53-63
    • /
    • 1993
  • A numerical modeling technique is proposed for computer simulations of high speed valve train dynamic terms in the valve spring reaction forces are calculated using linear vibration theory for given kinematic valve motions. Because the spring dynamics are analyzed before the time stepping integration, spring surge phenomena can be included without using additional computer time. In addition to that, steady state response of the valve dynamics can be obtained by just one cycle simulation. Consequently, valve train dynamics can be simulated very quickly without noticeable errors in accuracy. The experimental result prove the computer model developed here is accurate and also computationally efficient. The model is especially useful for cam profile optimizations.

  • PDF