• Title/Summary/Keyword: dynamics model

Search Result 5,073, Processing Time 0.036 seconds

Research on The Crash Location and Speed Distribution of Low Altitude Fixed-Wing Aircraft (저고도 운용 고정익 항공기의 고장 시 추락지점 및 속도 분포 연구)

  • Nam, Hong-Su;Park, Bae-Seon;Lee, Hak-Tae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.1
    • /
    • pp.59-66
    • /
    • 2022
  • In order to solve the problem of urban traffic congestion, Urban Air Mobility (UAM) concept using Electric Vertical Take-off and Landing (eVTOL) aircraft has been gaining popularity, and many domestic and international studies are underway. However, since these aircraft inevitably fly over densely populated areas, it is essential to ensure safety, which starts with accurately analyzing the crash risk. In this paper, the locations and impact speeds of crash are computed using six degree-of-freedom simulations of an eVTOL aircraft in a fixed-wing mode. System malfunction was modeled by a sudden loss of thrust with control surfaces being stuck during cruise. Because most of these eVTOL aircraft are still under development, a methodology of constructing a six degree-of-freedom dynamics model from generic specification is also developed. The results show that the crash locations are highly concentrated right under the aircraft within a square that has an edge length similar to the cruise altitude. Speed distribution is more complicated because almost identical crash locations can be achieved by two very different paths resulting in a large variation in the speeds.

Current Status and Direction of Weed Management According to Cropping Systems (작부체계에 따른 잡초관리 연구 동향과 방향)

  • Lee, Jihyun;Shin, Myeong-Na;Ku, Bon-Il;Shim, Kang-Bo;Jeon, Weon-Tai
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.4
    • /
    • pp.459-466
    • /
    • 2021
  • The present study was conducted to propose future research directions for weed management by examining the current trends of research on weed occurrence according to cropping systems. The cropping systems are developed for the efficient use of arable land, and the weed flora changes according to the management practices of a given cropping system. In particular, weed occurrence can be reduced by altering the soil environment. In addition, cultivation methods, such as tillage, affect the weed seed bank in the soil, thus altering the pattern of weed occurrence. Here, we propose three weed management practices according to the cropping system. First, it is necessary to develop a model that can classify weed species by analyzing young seedlings and can predict the flora in the field. Second, it is important to manage the cropping system history and establish a database of agricultural information, which can be linked to meteorological and geographic data. Third, it is critical to estimate the weed occurrence and soil seed bank dynamics, based on which a cropping system platform and digitalization technology can be developed. In the future, the prediction of weed occurrence and control according to the cropping system will contribute to sustainable agriculture by reducing the use of herbicides and solving the problems of resistant weeds.

Optimum Stiffness of the Sleeper Pad on an Open-Deck Steel Railway Bridge using Flexible Multibody Dynamic Analysis (유연다물체동적해석을 이용한 무도상교량 침목패드의 최적 강성 산정)

  • Chae, Sooho;Kim, Minsu;Back, In-Chul;Choi, Sanghyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.2
    • /
    • pp.131-140
    • /
    • 2022
  • Installing Continuous Welded Rail (CWR) is one of the economical ways to resolve the challenges of noise, vibration, and the open-deck steel railway bridge impact, and the SSF method using the interlocking sleeper fastener has recently been developed. In this study, the method employed for determining the optimum vertical stiffness of the sleeper pad installed under the bridge sleeper, which is utilized to adjust the rail height and absorb shock when the train passes when the interlocking sleeper fastener is applied, is presented. To determine the optimal vertical stiffness of the sleeper pad, related existing design codes are reviewed, and, running safety, ride comfort, track safety, and bridge vibration according to the change in the vertical stiffness of the sleeper pad are estimated via flexible multi-body dynamic analysis,. The flexible multi-body dynamic analysis is performed using commercial programs ABAQUS and VI-Rail. The numerical analysis is conducted using the bridge model for a 30m-long plate girder bridge, and the response is calculated when passing ITX Saemaeul and KTX vehicles and freight wagon when the vertical stiffness of the sleeper pad is altered from 7.5 kN/mm to 240 kN/mm. The optimum stiffness of the sleeper pad is calculated as 200 kN/mm under the conditions of the track components applied to the numerical analysis.

Ginsenoside Ro, an oleanolic saponin of Panax ginseng, exerts anti-inflammatory effect by direct inhibiting toll like receptor 4 signaling pathway

  • Xu, Hong-Lin;Chen, Guang-Hong;Wu, Yu-Ting;Xie, Ling-Peng;Tan, Zhang-Bin;Liu, Bin;Fan, Hui-Jie;Chen, Hong-Mei;Huang, Gui-Qiong;Liu, Min;Zhou, Ying-Chun
    • Journal of Ginseng Research
    • /
    • v.46 no.1
    • /
    • pp.156-166
    • /
    • 2022
  • Background: Panax ginseng Meyer (P. ginseng), a herb distributed in Korea, China and Japan, exerts benefits on diverse inflammatory conditions. However, the underlying mechanism and active ingredients remains largely unclear. Herein, we aimed to explore the active ingredients of P. ginseng against inflammation and elucidate underlying mechanisms. Methods: Inflammation model was constructed by lipopolysaccharide (LPS) in C57BL/6 mice and RAW264.7 macrophages. Molecular docking, molecular dynamics, surface plasmon resonance imaging (SPRi) and immunofluorescence were utilized to predict active component. Results: P. ginseng significantly inhibited LPS-induced lung injury and the expression of proinflammatory factors, including TNF-α, IL-6 and IL-1β. Additionally, P. ginseng blocked fluorescencelabeled LPS (LPS488) binding to the membranes of RAW264.7 macrophages, the phosphorylation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs). Furthermore, molecular docking demonstrated that ginsenoside Ro (GRo) docked into the LPS binding site of toll like receptor 4 (TLR4)/myeloid differentiation factor 2 (MD2) complex. Molecular dynamic simulations showed that the MD2-GRo binding conformation was stable. SPRi demonstrated an excellent interaction between TLR4/ MD2 complex and GRo (KD value of 1.16 × 10-9 M). GRo significantly inhibited LPS488 binding to cell membranes. Further studies showed that GRo markedly suppressed LPS-triggered lung injury, the transcription and secretion levels of TNF-α, IL-6 and IL-1β. Moreover, the phosphorylation of NF-κB and MAPKs as well as the p65 subunit nuclear translocation were inhibited by GRo dose-dependently. Conclusion: Our results suggest that GRo exerts anti-inflammation actions by direct inhibition of TLR4 signaling pathway.

The Use of Information and Communication Technologies in Education of Students' Civic Responsibility

  • Sadovyi, Mykola;Terenko, Olena;Filimonova, Tetiana;Malanchuk, Serhii;Vovkochyn, Lyudmyla;Paslawska, Alla;Oros, Ildiko
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.213-219
    • /
    • 2022
  • Building Ukraine as an independent, sovereign state requires the education of a citizen-patriot, able to live and work in a democracy, ensure the unity of Ukraine, feel constant responsibility for themselves, their people, country, seek to make a real contribution to the reform process. Modern modernization of the education system requires the search for new information and communication technologies that can ensure the formation of a citizen with an active civic position, which involves not only students mastering the rights and responsibilities of citizens, convincing them of the feasibility of democratic transformation of society, patriotic qualities and feelings, but also the identification of motivated civic actions. The pandemic and hostilities have led to significant changes in the field of education around the world, they have caused educational problems in Ukraine. At the beginning of the quarantine in the spring of 2020, all educational institutions in the emergency mode switched to distance learning. Intensive use of information and communication technologies in the life of modern society has led to a rethinking of the content of education and training of future professionals: the main role is played not so much by the information itself as the ability to work with it, critically comprehend and produce new knowledge; the main thing is not the amount of information, but its quality; information is needed for further practical application and transformation into knowledge, and the ability to work with information becomes one of the important competencies of the modern specialist in the new transformation of society: from information to the knowledge society. In this context, one of the main forms of training is distance learning, which is able to respond to the challenges of society. The main methodological positions that are taken into account in the construction of the structure and dynamics of the formation of civic responsibility of the individual during the use of information and communication technologies are highlighted. The structure of civil responsibility as a holistic system of information and communication technologies is outlined, which includes three subsystems that characterize the natural, social and systemic qualities of citizenship, interconnected hierarchically and synergistically.The constituent elements of the structural part of the model of civic culture of the individual are analyzed.

Numerical Simulation of Ocean - Ice Shelf Interaction: Water Mass Circulation in the Terra Nova Bay, Antarctica (해양-빙붕 상호작용을 고려한 남극 테라노바 만에서 수괴 형성과 순환의 수치 시뮬레이션)

  • Taekyun, Kim;Emilia Kyung, Jin;Ji Sung, Na;Choon Ki, Lee;Won Sang, Lee;Jae-Hong, Moon
    • Ocean and Polar Research
    • /
    • v.44 no.4
    • /
    • pp.269-285
    • /
    • 2022
  • The interaction between ocean and ice shelf is a critical physical process in relation to water mass transformations and ice shelf melting/freezing at the ocean-ice interface. However, it remains challenging to thoroughly understand the process due to a lack of observational data with respect to ice shelf cavities. This is the first study to simulate the variability and circulation of water mass both overlying the continental shelf and underneath an ice shelf and an ice tongue in the Terra Nova Bay (TNB), East Antarctica. To explore the properties of water mass and circulation patterns in the TNB and the corresponding effects on sub ice shelf basal melting, we explicitly incorporate the dynamic-thermodynamic processes acting on the ice shelf in the Regional Ocean Modeling System. The simulated water mass formation and circulation in the TNB region agree well with previous studies. The model results show that the TNB circulation is dominated by the geostrophic currents driven by lateral density gradients induced by the releasing of brine or freshwater at the polynya of the TNB. Meanwhile, the circulation dynamics in the cavity under the Nansen Ice shelf (NIS) are different from those in the TNB. The gravity-driven bottom current induced by High Salinity Shelf Water (HSSW) formed at the TNB polynya flows towards the grounding line, and the buoyance-driven flow associated with glacial meltwater generated by the HSSW emerges from the cavity along the ice base. Both current systems compose the thermohaline overturning circulation in the NIS cavity. This study estimates the NIS basal melting rate to be 0.98 m/a, which is comparable to the previously observed melt rate. However, the melting rate shows a significant variation in space and time.

Multi-fidelity uncertainty quantification of high Reynolds number turbulent flow around a rectangular 5:1 Cylinder

  • Sakuma, Mayu;Pepper, Nick;Warnakulasuriya, Suneth;Montomoli, Francesco;Wuch-ner, Roland;Bletzinger, Kai-Uwe
    • Wind and Structures
    • /
    • v.34 no.1
    • /
    • pp.127-136
    • /
    • 2022
  • In this work a multi-fidelity non-intrusive polynomial chaos (MF-NIPC) has been applied to a structural wind engineering problem in architectural design for the first time. In architectural design it is important to design structures that are safe in a range of wind directions and speeds. For this reason, the computational models used to design buildings and bridges must account for the uncertainties associated with the interaction between the structure and wind. In order to use the numerical simulations for the design, the numerical models must be validated by experi-mental data, and uncertainties contained in the experiments should also be taken into account. Uncertainty Quantifi-cation has been increasingly used for CFD simulations to consider such uncertainties. Typically, CFD simulations are computationally expensive, motivating the increased interest in multi-fidelity methods due to their ability to lev-erage limited data sets of high-fidelity data with evaluations of more computationally inexpensive models. Previous-ly, the multi-fidelity framework has been applied to CFD simulations for the purposes of optimization, rather than for the statistical assessment of candidate design. In this paper MF-NIPC method is applied to flow around a rectan-gular 5:1 cylinder, which has been thoroughly investigated for architectural design. The purpose of UQ is validation of numerical simulation results with experimental data, therefore the radius of curvature of the rectangular cylinder corners and the angle of attack are considered to be random variables, which are known to contain uncertainties when wind tunnel tests are carried out. Computational Fluid Dynamics (CFD) simulations are solved by a solver that employs the Finite Element Method (FEM) for two turbulence modeling approaches of the incompressible Navier-Stokes equations: Unsteady Reynolds Averaged Navier Stokes (URANS) and the Large Eddy simulation (LES). The results of the uncertainty analysis with CFD are compared to experimental data in terms of time-averaged pressure coefficients and bulk parameters. In addition, the accuracy and efficiency of the multi-fidelity framework is demonstrated through a comparison with the results of the high-fidelity model.

Hypervelocity Impact Simulations Considering Space Objects With Various Shapes and Impact Angles (다양한 형상의 우주 물체와 충돌 각도를 고려한 우주 구조물의 초고속 충돌 시뮬레이션 연구)

  • Shin, Hyun-Cheol;Park, Jae-Sang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.12
    • /
    • pp.829-838
    • /
    • 2022
  • This study conducts Hypervelocity Impact(HVI) simulations considering space objects with various shapes and different impact angles. A commercial nonlinear structural dynamics analysis code, LS-DYNA, is used for the present simulation study. The Smoothed Particle Hydrodynamic(SPH) method is applied to represent the impact phenomena with hypervelocity. Mie-Grüneisen Equation of State and Johnson-Cook material model are used to consider nonlinear structural behaviors of metallic materials. The space objects with various shapes are modeled as a sphere, cube, cylinder, and cone, respectively. The space structure is modeled as a thin plate(200 mm×200 mm×2 mm). HVI simulations are conducted when space objects with various shapes with 4.119 km/s collide with the space structures, and the impact phenomena such as a debris cloud are analyzed considering the space objects with various shapes having the same mass at the different impact angles of 0°, 30° and 45° between the space object and space structure. Although space objects have the same kinetic energy, different debris clouds are generated due to different shapes. In addition, it is investigated that the size of the debris cloud is decreased by impact angles.

The Main Methodological Positions of Educational Institutions in the System of Educational Work of the Modern Information Space

  • Shumiatska, Oleksandra;Palamar, Nataliia;Bilyk, Ruslana;Yakymenko, Svitlana;Yakovenko, Serhii;Tsybulko, Liudmyla;Bida, Olena
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.11
    • /
    • pp.272-278
    • /
    • 2022
  • The article proves the idea that the protection and development of Ukraine as an independent, sovereign state requires the education of a patriot citizen who is able to live and work in a democracy, ensure the unity of Ukraine, feel constant responsibility for himself, his people, the country, and strive to make a real contribution to reform processes, especially in unstable, wartime. The main goal of educational institutions in the system of educational work of the modern information space is revealed. The tasks of patriotic education of the individual are presented. The content of patriotic education at the wartime stage and the main characteristics of the content of patriotism are substantiated. The main methodological positions that are taken into account in the construction of the structure and dynamics of the formation of civil responsibility of the individual are highlighted. The structure of civic responsibility as an integral system of the modern information space is drawn, which includes three subsystems that characterize the natural, social and systemic qualities of citizenship, interconnected hierarchically and synergistically. The components of the structural part of the model of civil culture of the individual in the modern information space are analyzed.Modern modernization of the education system in the modern information space, which has led to the emergence of a new type of Educational Institutions, requires the search for new pedagogical technologies that can ensure the formation of a patriotic citizen with an active civic position, which involves not only mastering students' knowledge about the rights and obligations of citizens, convincing them of the expediency of democratic transformations of society, the formation of high moral and strong-willed, patriotic qualities and feelings, but also identifying motivated civic actions, actions that are necessary during martial law in Ukraine.

Numerical Study of Heat Flux and BOG in C-Type Liquefied Hydrogen Tank under Sloshing Excitation at the Saturated State (포화상태에 놓인 C-Type 액체수소 탱크의 슬로싱이 열 유속과 BOG에 미치는 변화의 수치적 분석)

  • Lee, Jin-Ho;Hwang, Se-Yun;Lee, Sung-Je;Lee, Jang Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.5
    • /
    • pp.299-308
    • /
    • 2022
  • This study was conducted to predict the tendency for heat exchange and boil-off gas (BOG) in a liquefied hydrogen tank under sloshing excitation. First, athe fluid domain excited by sloshing was modeled using a multiphase-thermal flow domain in which liquid hydrogen and hydrogen gas are in the saturated state. Both the the volume of fluid (VOF) and Eulerian-based multi-phase flow methods were applied to validate the accuracy of the pressure prediction. Second, it was indirectly shown that the fluid velocity prediction could be accurate by comparing the free surface and impact pressure from the computational fluid dynamics with those from the experimental results. Thereafter, the heat ingress from the external convective heat flux was reflected on the outer surfaces of the hydrogen tank. Eulerian-based multiphase-heat flow analysis was performed for a two-dimensional Type-C cylindrical hydrogen tank under rotational sloshing motion, and an inflation technique was applied to transform the fluid domain into a computational grid model. The heat exchange and heat flux in the hydrogen liquid-gas mixture were calculated throughout the analysis,, whereas the mass transfer and vaporization models were excluded to account for the pure heat exchange between the liquid and gas in the saturated state. In addition, forced convective heat transfer by sloshing on the inner wall of the tank was not reflected so that the heat exchange in the multiphase flow of liquid and gas could only be considered. Finally, the effect of sloshing on the amount of heat exchange between liquid and gas hydrogen was discussed. Considering the heat ingress into liquid hydrogen according to the presence/absence of a sloshing excitation, the amount of heat flux and BOG were discussed for each filling ratio.