• Title/Summary/Keyword: dynamics fermentation

Search Result 37, Processing Time 0.024 seconds

Biotechnological Characteristics of Some Saccharomyces species Isolated from Wine Yeast Culture

  • Letitia, Oprean
    • Food Science and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.722-726
    • /
    • 2005
  • The use of isolated wine yeasts in winemaking processes is preferable to spontaneous fermentation. Selection criteria of wine yeast strains depend also on capacity and rate of fermentation and on alcohologenic capabilities. Our studies have described the dynamics of fermentation of wine musts by some isolated wine yeast strains of Saccharomyces genus: strains 6 and 8 of S. cerevisiae var. ellipsoideus (S. ellipsoideus) and strains 5 and 7 of S. bayanus var. oviformis (S. oviformis). All have high technological properties and all are adapted for the specific pedoclimatic conditions of some areas of Sibiu viticultural region. The selected strains were used as inocula to ferment Sauvignon, Muscat Ottonel, Rose Traminer, and Pino Gris musts in controlled laboratory conditions. It was found that higher initial oxygen concentration in must is necessary to accelerate the fermentation of all the wine yeast strains studied. In order to obtain quality wines, strains with considerable fermentative capacity, high alcohologenic capabilities, and a good conversion efficiency are recommended.

Dynamics of Early Fermentation of Italian Ryegrass (Lolium multiflorum Lam.)Silage

  • Shao, Tao;Ohba, N.;Shimojo, M.;Masuda, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.11
    • /
    • pp.1606-1610
    • /
    • 2002
  • The dynamics of fermentation were studied with Italian ryegrass ensiled in the laboratory silos. The silos were kept in the room set at 25$^{\circ}C$, and then were opened on 0.5, 1, 2, 3, 5, 7 and 14 days after ensiling, respectively. The samples were taken from three silos at each sampling time for chemical analyses. Mono-and disaccharides composition was determined for glucose, fructose and sucrose by high performance liquid chromatography. The Italian ryegrass silage succeeded to achieve lactate type fermentation; high values of lactic acid (85.83 g/kg) and lactic acid/acetic acid at the end of ensiling (14 day), low values of pH (3.74), acetic acid (5.38 g/kg), ethanol (19.20 g/kg) and $NH_3-N/Total\;N$ (75.84 g/kg), no or only small amounts of butyric acid, valeric acid and propionic acid. The fermentation dynamics showed a fast and large pH decrease caused by a fast and large production of lactic acid during the first 5 days. Mono-and disaccharides composition largely decreased within initial 0.5 day (12 h) of ensiling. Sucrose disappeared rapidly within initial 0.5 day of ensiling, and fructose and glucose contents showed an initial rise during ensiling, and then decreased gradually. These indicated that the enzymes of plant tissue were active within 2 days of ensiling, which caused the initial rise in fructose and glucose from the hydrolysis of sucrose and fructans. After 5 days of ensilage, glucose was consumed completely, suggesting that glucose was the first fermentation substrate. After 2 days of ensiling, sum amounts of lactic acid and remaining mono-and disaccharides proved to be larger than the quantity of mono-and disaccharides in the initial grass. From the facts mentioned above, it was suggested that considerable amounts of lactic acid were produced from some other substrate such as fructans than initial mono-and disaccharides.

Effect of Bacteriophages on Viability and Growth of Co-cultivated Weissella and Leuconostoc in Kimchi Fermentation

  • Kong, Se-Jin;Park, Jong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.4
    • /
    • pp.558-561
    • /
    • 2019
  • This study aimed to understand the survival and growth patterns of bacteriophage-sensitive Weissella and Leuconostoc strains involved in kimchi fermentation. Dongchimi kimchi was prepared, and Weissella and Leuconostoc were co-cultivated in the dongchimi broth. Weissella cibaria KCTC 3807 growth was accompanied by rapid lysis with an increase in the bacteriophage quantity. Leuconostoc citreum KCCM 12030 followed the same pattern. The bacteriophage-insensitive strains W. cibaria KCTC 3499 and Leuconostoc mesenteroides KCCM 11325 survived longer under low pH as their growth was not accompanied by bacteriophages. The bacteriophage lysate of W. cibaria KCTC 3807 accelerated and promoted the growth of Leuconostoc. Overall, our results show that bacteriophages might affect the viability and population dynamics of lactic acid bacteria during kimchi fermentation.

Effects of lactic acid bacteria and molasses on fermentation dynamics, structural and nonstructural carbohydrate composition and in vitro ruminal fermentation of rice straw silage

  • Zhao, Jie;Dong, Zhihao;Li, Junfeng;Chen, Lei;Bai, Yunfeng;Jia, Yushan;Shao, Tao
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.6
    • /
    • pp.783-791
    • /
    • 2019
  • Objective: This study was to evaluate the fermentation dynamics, structural and nonstructural carbohydrate composition and in vitro gas production of rice straw ensiled with lactic acid bacteria and molasses. Methods: Fresh rice straw was ensiled in 1-L laboratory silos with no additive control (C), Lactobacillus plantarum (L), molasses (M) and molasses+Lactobacillus plantarum (ML) for 6, 15, 30, and 60 days. After storage, the silages were subjected to microbial and chemical analyses as well as the further in vitro fermentation trial. Results: All additives increased lactic acid concentration, and reduced pH, dry matter (DM) loss and structural carbohydrate content relative to the control (p<0.05). The highest organic acid and residual sugar contents and lignocellulose reduction were observed in ML silage. L silage had the highest V-score with 88.10 followed by ML silage. L and ML silage improved in vitro DM digestibility as compared with other treatments, while in vitro neutral detergent fibre degradability (IVNDFD) was increased in M and ML silage (p<0.05). M silage significantly (p<0.05) increased propionic acid (PA) content and decreased butyric acid content and acetic acid/PA as well as 72-h cumulative gas production. Conclusion: The application of ML was effective for improving both the fermentation quality and in vitro digestibility of rice straw silage. Inclusion with molasses to rice straw could reduce in vitro ruminal gas production.

Effects of Polyurethane Coated Urea Supplement on In vitro Ruminal Fermentation, Ammonia Release Dynamics and Lactating Performance of Holstein Dairy Cows Fed a Steam-flaked Corn-based Diet

  • Xin, H.S.;Schaefer, D.M.;Liu, Q.P.;Axe, D.E.;Meng, Q.X.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.4
    • /
    • pp.491-500
    • /
    • 2010
  • Three experiments were conducted to investigate the effects of polyurethane coated urea on in vitro ruminal fermentation, ammonia release dynamics and lactating performance of Holstein dairy cows fed a steam-flaked corn-based diet. In Exp. 1, a dual-flow continuous culture was run to investigate the effect of polyurethane coated urea on nutrient digestibility, rumen fermentation parameters and microbial efficiency. Three treatment diets with isonitrogenous contents (13.0% CP) were prepared: i) feedgrade urea (FGU) diet; ii) polyurethane coated urea (PCU) diet; and iii) isolated soy protein (ISP) diet. Each of the diets consisted of 40% steam-flaked corn meal, 58.5% forages and 1.5% different sources of nitrogen. PCU and FGU diets had significantly lower digestibility of NDF and ADF (p<0.01) than the ISP diet. Nitrogen source had no significant effect (p = 0.62) on CP digestibility. The microbial efficiency (expressed as grams of microbial N/kg organic matter truly digested (OMTD)) in vitro of the PCU diet (13.0 g N/kg OMTD) was significantly higher than the FGU diet (11.3 g N/kg OMTD), but comparable with the ISP diet (14.7 g N/kg OMTD). Exp. 2, an in vitro ruminal fermentation experiment, was conducted to determine the ammonia release dynamics during an 8 h ruminal fermentation. Three treatment diets were based on steam-flaked corn diets commonly fed to lactating cows in China, in which FGU, PCU or soybean meal (SBM) was added to provide 10% of total dietary N. In vitro $NH_3-N$ concentrations were lower (p<0.05) for the PCU diet than the FGU diet, but similar to that for the SBM diet at all time points. In Exp. 3, a lactation trial was performed using 24 lactating Holstein cows to compare the lactating performance and blood urea nitrogen (BUN) concentrations when cows were fed PCU, FGU and SBM diets. Cows consuming the PCU diet had approximately 12.8% more (p = 0.02) dietary dry matter intake than those consuming the FGU diet. Cows fed the PCU diet had higher milk protein content (3.16% vs. 2.94%) and lower milk urea nitrogen (MUN) concentration (13.0 mg/dl vs. 14.4 mg/dl) than those fed the FGU diet. Blood urea nitrogen (BUN) concentration was significantly lower for cows fed the PCU (16.7 mg/dl) and SBM (16.4 mg/dl) diets than the FGU (18.7 mg/dl) diet. Cows fed the PCU diet had less surplus ruminal N than those fed the FGU diet and produced a comparable lactation performance to the SBM diet, suggesting that polyurethane coated urea can partially substitute soybean meal in the dairy cow diet without impairing lactation performance.

Effects of Lactobacillus curvatus and Leuconostoc mesenteroides on Suan Cai Fermentation in Northeast China

  • Yang, Hongyan;Wu, Hao;Gao, Lijuan;Jia, Hongbai;Zhang, Yuan;Cui, Zongjun;Li, Yuhua
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.12
    • /
    • pp.2148-2158
    • /
    • 2016
  • To investigate the effects of Lactobacillus curvatus and Leuconostoc mesenteroides on suan cai (pickled Chinese cabbage) fermentation, L. curvatus and/or Ln. mesenteroides were inoculated into suan cai. Physicochemical indexes were measured, and the microbial dynamics during the fermentation were analyzed by Illumina MiSeq sequencing and quantitative polymerase chain reaction (qPCR). The results showed that inoculation with lactic acid bacteria (LAB) lowered the pH of the fermentation system more rapidly. The decrease in water-soluble carbohydrates in the inoculated treatments occurred more rapidly than in the control. The LAB counts in the control were lower than in other inoculated treatments during the first 12 days of fermentation. According to the Illumina MiSeq sequencing analyses, Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, Cyanobacteria, Fusobacteria, and Verrucomicrobia were present in the fermentations, along with other unclassified bacteria. Generally, Firmicutes was predominant during the fermentation in all treatments. At the genus level, 16 genera were detected. The relative abundance of Lactobacillus in all inoculated treatments was higher than in the control. The relative abundance of Lactobacillus in the treatments containing L. curvatus was higher than in the Ln. mesenteroides-only treatment. The relative abundance of Leuconostoc in the Ln. mesenteroides-containing treatments increased continuously throughout the fermentation. Leuconostoc was highest in the Ln. mesenteroides-only treatment. According to the qPCR results, L. curvatus and/or Ln. mesenteroides inoculations could effectively inhabit the fermentation system. L. curvatus dominated the fermentation in the inoculated treatments.

Changes in physicochemical property and lactic acid bacterial community during kimchi fermentation at different temperatures

  • Lee, Hee Yul;Haque, Md. Azizul;Cho, Kye Man
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.4
    • /
    • pp.429-437
    • /
    • 2020
  • This study aimed to investigate the change in physicochemical properties and lactic acid bacterial communities during kimchi fermentation at different temperatures (8, 15, and 25 ℃) using two molecular genetics approaches, multiplex polymerase chain reaction and 16S rRNA gene sequencing. The pH during fermentation at 8, 15, and 25 ℃ decreased from 6.17 on the initial fermentation day to 3.92, 3.79, and 3.48 after 54, 30, and 24 days of fermentation, respectively, while the acidity increased from 0.24% to 1.12, 1.35, and 1.54%, respectively. In particular, the levels of lactic acid increased from 3.74 g/L on the initial day (day 0) to 14.43, 20.60, and 27.69 g/L during the fermentation after 24, 18, and 12 days at 8, 15, and 25 ℃, respectively, after that the lactic acid concentrations decreased slowly. The predominance of lactic acid bacteria (LAB) in the fermented kimchi was dependent on fermentation stage and temperature: Lactobacillus sakei appeared during the initial stage and Leuconsotoc mesenteroides was observed during the optimum-ripening stage at 8, 15, and 25 ℃. Lac. sakei and Lactobacillus plantarum grew rapidly in kimchi produced at 8, 15, and 25 ℃. In addition, Weissella koreensis first appeared at days 12, 9, and 6 at 8, 15, and 25 ℃ of fermentation, respectively. This result suggests that LAB population dynamics are rather sensitive to environmental conditions, such as pH, acidity, salinity, temperature, and chemical factors including free sugar and organic acids.

Effects of Ruminal Infusion of Garlic Oil on Fermentation Dynamics, Fatty Acid Profile and Abundance of Bacteria Involved in Biohydrogenation in Rumen of Goats

  • Zhu, Zhi;Mao, Shengyong;Zhu, Weiyun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.7
    • /
    • pp.962-970
    • /
    • 2012
  • This study aimed to investigate the effects of ruminal infusion of garlic oil (GO) on fermentation dynamics, fatty acid (FA) profile, and abundance of bacteria involved in biohydrogenation in the rumen. Six wethers fitted with ruminal fistula were assigned to two groups for cross-over design with a 14-d interval. Each 30-d experimental period consisted of a 27-d adaptation and a 3-d sample collection. Goats were fed a basal diet without (control) or with GO ruminal infusion (0.8 g/d). Ruminal contents collected before (0 h) and at 2, 4, 6, 8, and 10 h after morning feeding were used for fermentation analysis, and 0 h samples were further used for FA determination and DNA extraction. Garlic oil had no influence on dry matter intakes of concentrate and hay. During ruminal fermentation, GO had no effects on total VFA concentration and individual VFA molar proportions, whereas GO increased the concentrations of ammonia nitrogen and microbial crude protein (p<0.05). Compared with control, GO group took a longer time for total VFA concentration and propionate molar proportion to reach their respective maxima after morning feeding. The ratio of acetate to propionate in control reduced sharply after morning feeding, whereas it remained relatively stable in GO group. Fatty acid analysis showed that GO reduced saturated FA proportion (p<0.05), while increasing the proportions of C18, t11-18:1 (TVA), c9,t11-conjugated linoleic acid (c9,t11-CLA), t10,c12-CLA, and polyunsaturated FA (p<0.05). The values of TVA/(c9,t11-CLA+TVA) and C18:0/(TVA+C18:0) were reduced by GO (p<0.05). Real-time PCR showed that GO tended to reduce Butyrivibrio proteoclasticus abundance (p = 0.058), whereas GO had no effect on total abundance of the Butyrivibrio group bacteria. A low correlation was found between B. proteoclasticus abundance and C18:0/(TVA+C18:0) (p = 0.910). The changes of fermentation over time suggested a role of GO in delaying the fermentation process and maintaining a relatively modest change of ruminal environment. The inhibitory effects of GO on the final step of biohydrogenation may be related to its antibacterial activity against B. proteoclasticus and other unknown bacteria involved.

Microencapsulation of Mitragyna leaf extracts to be used as a bioactive compound source to enhance in vitro fermentation characteristics and microbial dynamics

  • Maharach Matra;Srisan Phupaboon;Pajaree Totakul;Ronnachai Prommachart;Assar Ali Shah;Ali Mujtaba Shah;Metha Wanapat
    • Animal Bioscience
    • /
    • v.37 no.1
    • /
    • pp.74-83
    • /
    • 2024
  • Objective: Mitragyna speciosa Korth is traditionally used in Thailand. They have a high level of antioxidant capacities and bioactive compounds, the potential to modulate rumen fermentation and decrease methane production. The aim of the study was to investigate the different levels of microencapsulated-Mitragyna leaves extracts (MMLE) supplementation on nutrient degradability, rumen ecology, microbial dynamics, and methane production in an in vitro study. Methods: A completely randomized design was used to assign the experimental treatments, MMLE was supplemented at 0%, 4%, 6%, and 8% of the total dry matter (DM) substrate. Results: The addition of MMLE significantly increased in vitro dry matter degradability both at 12, 24, and 48 h, while ammonia-nitrogen (NH3-N) concentration was improved with MMLE supplementation. The MMLE had the greatest propionate and total volatile fatty acid production when added with 6% of total DM substrate, while decreased the methane production (12, 24, and 48 h). Furthermore, the microbial population of cellulolytic bacteria and Butyrivibrio fibrisolvens were increased, whilst Methanobacteriales was decreased with MMLE feeding. Conclusion: The results indicated that MMLE could be a potential alternative plant-based bioactive compound supplement to be used as ruminant feed additives.

Effects of Different Additives on Fermentation Characteristics and Protein Degradation of Green Tea Grounds Silage

  • Wang, R.R.;Wang, H.L.;Liu, X.;Xu, C.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.5
    • /
    • pp.616-622
    • /
    • 2011
  • This study evaluated the fermentation characteristics and protein degradation dynamics of wet green tea grounds (WGTG) silage. The WGTG was ensiled with distilled water (control), or lactic acid bacteria (LAB), enzyme (E), formic acid (FA) and formaldehyde (FD) prior to ensiling. Three bag silos for each treatment were randomly opened at 0, 3, 7, 14, 28 and 60 days after anaerobic storage. For all the treatments, except for FA, there was a rapid decline in pH during the first 7 days of ensiling. LAB treatment had higher lactic acid content, lower ammonia-N ($NH_3$-N) and free-amino nitrogen (FAA-N) contents than other treatments (p<0.05). E treatment had higher lactic acid, water-soluble carbohydrates (WSC) and non-protein nitrogen (NPN) content than the control (p<0.05). FA treatment had higher $NH_3$-N and FAA-N content than the control (p<0.05). FD treatment had lower NPN and FAA-N content than the control, but it did not significantly inhibit the protein degradation when compared to LAB treatment (p>0.05). Results indicate that LAB treatment had the best effect on the fermentation characteristics and protein degradation of WGTG silage.