Browse > Article
http://dx.doi.org/10.5713/ajas.2002.1606

Dynamics of Early Fermentation of Italian Ryegrass (Lolium multiflorum Lam.)Silage  

Shao, Tao (Lanzhou Institute of Animal Science and Veterinary Medicine of CAAS)
Ohba, N. (Division of Animal Science, Department of Animal and Marine Bioresource Sciences Graduate School of Kyushu University)
Shimojo, M. (Division of Animal Science, Department of Animal and Marine Bioresource Sciences Graduate School of Kyushu University)
Masuda, Y. (Division of Animal Science, Department of Animal and Marine Bioresource Sciences Graduate School of Kyushu University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.15, no.11, 2002 , pp. 1606-1610 More about this Journal
Abstract
The dynamics of fermentation were studied with Italian ryegrass ensiled in the laboratory silos. The silos were kept in the room set at 25$^{\circ}C$, and then were opened on 0.5, 1, 2, 3, 5, 7 and 14 days after ensiling, respectively. The samples were taken from three silos at each sampling time for chemical analyses. Mono-and disaccharides composition was determined for glucose, fructose and sucrose by high performance liquid chromatography. The Italian ryegrass silage succeeded to achieve lactate type fermentation; high values of lactic acid (85.83 g/kg) and lactic acid/acetic acid at the end of ensiling (14 day), low values of pH (3.74), acetic acid (5.38 g/kg), ethanol (19.20 g/kg) and $NH_3-N/Total\;N$ (75.84 g/kg), no or only small amounts of butyric acid, valeric acid and propionic acid. The fermentation dynamics showed a fast and large pH decrease caused by a fast and large production of lactic acid during the first 5 days. Mono-and disaccharides composition largely decreased within initial 0.5 day (12 h) of ensiling. Sucrose disappeared rapidly within initial 0.5 day of ensiling, and fructose and glucose contents showed an initial rise during ensiling, and then decreased gradually. These indicated that the enzymes of plant tissue were active within 2 days of ensiling, which caused the initial rise in fructose and glucose from the hydrolysis of sucrose and fructans. After 5 days of ensilage, glucose was consumed completely, suggesting that glucose was the first fermentation substrate. After 2 days of ensiling, sum amounts of lactic acid and remaining mono-and disaccharides proved to be larger than the quantity of mono-and disaccharides in the initial grass. From the facts mentioned above, it was suggested that considerable amounts of lactic acid were produced from some other substrate such as fructans than initial mono-and disaccharides.
Keywords
Dynamics; Fermentation; Italian Ryegrass;
Citations & Related Records

Times Cited By Web Of Science : 11  (Related Records In Web of Science)
Times Cited By SCOPUS : 10
연도 인용수 순위
1 Barker, S. B. and W. H. Summerson. 1941. The colorimetric determination of lactic acid in biological material. J. Biol. Chem. 138:535-554.
2 Breese, E. L. 1983. Exploitation of genetic resource through breeding: Lolium species. In: Genetic Resources of Forage Plants (Ed. G. Mclover and R. A. Bray). CSIRO 1983, Australia. 275-288.
3 Catchpoole, V. R. and E. F. Henzell. 1971. Silage and silage making from tropical herbage species. Herb. Abstr. 41:213-219.
4 Driehuis, F., P. G. Van. Wilkselaar, A. M. Van. Vuuren and S. F. Spoelstra. 1997. Effect of a bacteria inoculant on rate of fermentation and chemical composition of high dry matter grass silages. J Agric. Sci. Cambridge. 128:323-329.   DOI
5 Greenhill, W. L. 1964 a. Plant juices in relation to silage fermentation. I. The role of the juice. J. Br. Grassl. Soc. 19:30-37.   DOI
6 Greenhill, W. L. 1964b. Plant juices in relation to silage fermentation. II. Factors affecting the release of juices. J. Br. Grassl. Soc. 19:231-236.   DOI
7 Greenhill, W. L. 1964 c. Plant juices in relation to silage fermentation. III. Effect of water activity of juice. J. Br. Grassl. Soc. 19:231-236.   DOI
8 Gibson, T., A. C. Stirling, R. M. Keddie and R. F. Rosenberger. 1961. Bacteriological changes in silage as affected by laceration of the fresh grass. J. Appl. Bacteriol. 24:60-70.
9 Henderson, A. R. and P. McDonald. 1971. Effect of formic acid on the fermentation of grass of low dry matter content. J. Sci. Food Agric. 22:157-163.   DOI
10 Seale, D. R. 1986. Bacterial inoculants as silage additives. J. Appl. Bacteriol., Symp. Suppl. 9S-26S.
11 AOAC. 1984. Official Methods of Analysis. 14th edn. Association of Official and Analytical Chemists Arlington, Virginia-2221.
12 Hattori, I., S. Kumai and R. Fukumi. 1993. The effect of saccharide additives on the fermentation quality of silage. J. Japan. Grassl. Sci. 39:326-333.
13 Rooke, J. A. and F. Kafilzadeh. 1994. The effect upon fermentation and nutritive value of silages produced after treatment by three different inoculants of lactic acid bacteria applied alone or in combination. Grass and Forage Sci. 49:324-333.   DOI   ScienceOn
14 Beck, T. 1978. The microbiology of silage fermentation. In: Fermentation of Silage-a Review Ed. McCullough and M. E. Iowa: National Feed Ingredients Association. pp. 61-115.
15 Carpintero, M. C., A. J. Holding and P. McDonald. 1969. Fermentation studies of Lucerne. J. Sci. Food Agric. 29:497-505.   DOI
16 Ashbell, G. and Y. Kashanchi. 1987. In-silo losses from wheat ensiled in bunker silos in subtropical climate. J. Sci. Food Agric. 40:95-103.   DOI
17 Smith, D. 1973. The nonstructural carbohydrates. In : Chemistry and Biochemistry of Herbage (Ed. G. W. Butter and R. W. Bailey). Academic press, New York. Volume. 1:105-155.
18 SAS. Institute Inc. 1985. SAS/STAT User`s Guide: Version 6. 4th edn. SAS Institute Inc., Cary, North Carolina.
19 Beck, T. 1972. Die quantitative und qualitative Zusammensetzung der Milchsauerebakterienpopulation im Garfutter. Landwirtschaftliche Forschung. 27:55-63.
20 McDonald, P., A. R. Henderson and S. J. E. Heron. 1991. The Biochemistry of Silage. 2nd ed. Cambrian Printers Ltd. Aberystwyth. pp. 184-236.
21 Weinberg, Z. G., G. Ashbell and G. Azrieli. 1988. The effect of applying lactic acid bacteria at ensilage on the chemical and microbiological composition of vetch, wheat and alfalfa silages. J. Appl. Bacteriol. 64:1-7.
22 Masaki, S. and Y. Ohyama. 1979. Changes in sugars during ensilage-production of lactic acid and volatile fatty acids. Jap. J. Zootech. Sci. 50(5):280-287.
23 Bousset, J., N. Bousset-Fatianoff, Ph., Gouet and M. Contrepois. 1972. Annales de biologie Animale, Biochimie et Biophysique. 12:453-477.   DOI
24 Henderson, N. 1993. Silage additives. Anim. Feed Sci. Technol. 45:35-36.   DOI   ScienceOn
25 Wylam, C. 1953. Analytical studies on the carbohydrates of grasses and clovers. III. Carbohydrate breakdown during wilting and ensilage. J. Sci. Food Agric. 4:527-531.   DOI
26 Clark, B. J. 1974. Ph. D. Thesis, University of Edinburgh.
27 Gouet, Ph., N. Fatianoff and J. Bousset. 1970. Compte Rendu del Academie de Sciences, Paris. 270:1024-1027.