• Title/Summary/Keyword: dynamically tuned gyroscope

Search Result 16, Processing Time 0.02 seconds

A Digitized Decoupled Dual-axis Micro Dynamically Tuned Gyroscope with Three Equilibrium Rings

  • Xia, Dunzhu;Ni, Peizhen;Kong, Lun
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.385-395
    • /
    • 2017
  • A new digitized decoupled dual-axis micro dynamically tuned gyroscope with three equilibrium rings (TMDTG) is proposed which can eliminate the constant torque disturbance (CTD) caused by the double rotation frequency of a driving shaft with a micro dynamically tuned gyroscope with one equilibrium ring (MDTG). A mechanical and kinematic model of the TMDTG is theoretically analyzed and the structure parameters are optimized in ANSYS to demonstrate reliability. By adjusting the thickness of each equilibrium ring, the CTD can be eliminated. The digitized model of the TMDTG system is then simulated and examined using MATLAB. Finally, a digitized prototype based on FPGA is created. The gyroscope can be dynamically tuned by adjusting feedback voltage. Experimental results show the TMDTG has good performance with a scale factor of $283LSB/^{\circ}/s$ in X-axis and $220LSB/^{\circ}/s$ in Y-axis, respectively. The scale factor non-linearity is 0.09% in X-axis and 0.13% in Y-axis. Results from analytical models, simulations, and experiments demonstrate the feasibility of the proposed TMDTG.

Characteristics comparison according to operating mode of dynamically tuned gyroscope in the electro-optical tracking system (EOTS에서의 동조자이노스코프의 동작모드에 따른 특성비교)

  • Im, Sung-Woon;Ma, Jin-Suk;Kwon, Woo-Hyen
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.3
    • /
    • pp.311-317
    • /
    • 1997
  • DTG(dynamically tuned gyroscope) is a sensor detecting disturbance in angle velocity control loop of EOTS(electro optical tracking system), which is used for the stabilization of gimbal. DTG is classified into rate mode or rate integrated mode according to operating mode. In this paper, basic principles and characteristics of DTG, depending on to operating mode, are compared and the model of rate integrated mode DTG is proposed. Also, the validity of the presented model is verified by computer simulations and experiments.

  • PDF

Error Aalysis of Mechanical Parts and Dynamic Balancing in A Dynamically Tuned Gyroscope (동조자이로스코프의 기계부 오차 해석 및 동적밸런싱)

  • J.O. Young;C.G. Ahn;Lee, J.M.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.2
    • /
    • pp.13-22
    • /
    • 1997
  • Strapdown inertial navigation system(SDINS) is a navigational instruments necessary to guide and con- trol a free vehicle. In this study, an error analysis of mechanical parts is carried out for manufacturing a dynamically tuned gyroscope. The errors usually come from the tolerance in machining and assembly. In the error analysis, a criterion to be considered during designing and manufacturing is proposed by quanti- tatively analyzing the effect of DTG performance by tolerances. The theory of dynamic balancing is deduced and unbalance is reduced through experiment.

  • PDF

Design and fabrication of a dynamically tuned gyroscope (DTG (Dynamically Tuned Gyroscope) 설계 및 제작)

  • 이장규;이장무;김원찬;이동녕
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.519-521
    • /
    • 1987
  • Among the gyroscopes used for SDINS, the dynamically turned gyroscope (DTG) covers a wide dynamic range while it is simple and small. In addition, it is a two-degree-of freedom gyro; it can detect two-axis input simultaneously. DTG, since its development in 1970's, is widely accepted for strapdown inertial systems. In the first year, we have concentrated on developing a two degree-of-freedom DIG. An interdisciplinary research team has been formed to accomplish the first year objective. Five departments in the College of Engineering, Seoul National University are involved. They are; 1) Department of Control and Instrumentation, 2) Department of Mechanical Design and Production, 3) Department of Electrical Engineering, 4) Department of Electronic Engineering, and 5) Department of Metallurgical Engineering. In addition, the Department of Precision Mechanical Engineering of Pusan National University is subcontracted to develop a test procedure for gyroscope and SDINS. Gyroscope is a key sensor for SDINS. Furthermore gyroscope itself is used as a. independent sensor for vehicle guidance and control and fire control system. Gyroscope and SDINS are an important for defense, aeronautical, and space industries that Korea is and will be actively involved. Upon the success of the project, they are expected to be manufactured in Korea under a cooperative effort between university and industry.

  • PDF

Digital Rebalance Loop Design for a Dynamically Tuned Gyroscope using Frequency Weighted H$_2$ Controller (주파수 가중 H$_2$ 제어기를 이용한 동조자이로스코프의 디지털 재평형루프 설계)

  • 송진우;이장규;강태삼
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.9
    • /
    • pp.1131-1139
    • /
    • 1999
  • In this paper, we present a wide-bandwidth digital rebalance loop for a dynamically tuned gyroscope(DTG) based on {{{{ { H}_{2 } }}}} methodology. The operational principle and the importance of a rebalance loop are explaind, first. The augmented plant model is constructed, which includes a gyroscope model and an integrator. An {{{{ { H}_{ 2} }}}} based controller is designed for the augmented plant model. To verify the performance of the controller, a digital rebalance loop for a DTG is designed, fabricated and experimented. Through frequency response analyses and experiments using a real DTG, it is confirmed that the controller is more robustly stable and has a wider bandwidth compared with those of a conventional PID controller, contributing to the performance improvement of a DTG.

  • PDF

Analysis and application of the dynamically tuned gyroscope (Angular velocity sensor of EOTS) (동조자이로스코프의 해석 및 응용 (전자광학추적기의 회전각속도 센서))

  • Im, Sung-Woon
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.47-56
    • /
    • 1996
  • The basic principle and characteristics of a DTG(dynamically tuned gyroscope) are presented in this paper, which is used for the detection of disturbance and for the stabilization of gimbal. An accurate model of the rate mode DTG is proposed. This model has a resonance characteristics which is more similar to the characteristics of practical systems than the conventional 2nd order system model. Therefore, this model is applicable to the general rate mode gyroscope. Some problems at using DTG for a real electro optical tracking system are discussed and a solution is described.

  • PDF

Analysis of flexure stiffness and stiffness test in DTG (동조 자이로스코프 서스펜션의 굽힘자 해석 및 시험)

  • Youn, J.O.;Kim, J.H.;Lee, J.G.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.5
    • /
    • pp.30-37
    • /
    • 1996
  • The objective of this research is to explore the analysis and test method for the reliable design and fabrication of a high precision dynamically tuned gyroscope. The tuning frequency is decided by the calculation of mass moment of inertia of rotor and gimbal and the stiffness of flexures. Due to the complex geometry of the flexure, calculation of the stiffness of the suspension flexure is difficult. In this paper, three analytical methods for obtaining the stiffness of the flexure are porposed and a special testing method is used for checking the accuracy of the computed results.

  • PDF

A Study on the Fabrication and Analysis of Mechanical Parts of a Dynamically Tuned Gyroscope (동조자이로스코우프 기계부의 제작 및 해석에 관한 연구)

  • 안창기;윤종욱;이장무
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.930-937
    • /
    • 1994
  • Straodown intertial navigation system(SDINS) is a navigational instrument necessary to guide and control a free vehicle. Dynamically Tuned Gyroscope(DTG) which is widely applied to SDINS convers a wide dynamic range and is simple and small. In study, the analysis of mechanical parts or sensor parts and research of balancing is performed for manufacturing a DTG. In error analysis the criterion considered during designing and manufacturing is established by quantitatively anayzing the effect of DTG performance by tolerance. And the theory of dynamic balancing is derived and unbalance is reduced through experiment. And the stiffness of flexure is verified by tuning experiment.

  • PDF

The Rebalance Loop Design with an Input Compensator for a Dynamically Tuned Gyroscope (직렬 공진형 콘버터의 새로운 제어방)

  • 정규범;이춘택;조규형
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.2
    • /
    • pp.119-126
    • /
    • 1989
  • In this paper, a new technique, which uses an "input compensator", is proposed to design a controller for the rebalance loop of a Dynamically Tuned Gyroscope (DTG) and the performance of this new controller is compared with that of a Proportional and Integral (PI) controller through simulation. The rebalance loop is an essential part of a DTG` it is composed of a controller, low-pass filters, notch filters and torque drivers. Among them, the controller is the main attributor to determine the performance of the rebalance loop. Through simulation, it is concluded that the performance of the newly designed controller is better than that of a PI controller in the point of (1) low maximum overshoot, (2) short settling time and (3) small steady state error.

Design of the Temperature Controller for a Dynamically Tuned Gyroscope Using Parameter Estimation Methods (계수 추정 기법을 이용한 동조자이로스코프 온도 제어기의 설계)

  • Song, Jin-Woo;Lee, Jang-Gyu;Kang, Tae-Sam;Kim, Jin-Won
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1146-1148
    • /
    • 1996
  • In this paper, uncertain parameters of the heat transfer model of a Dynamically Tuned Gyroscope (DTG) are estimated by the Recursive Least Squares (RLS) method. Also, using this model, a temperature controller for a DTG is designed. As the temperature controller, a PI controller is used. It is presented that a controller can be easily designed when the heat transfer model of a DTG is used. By simulations and experiments, it is shown that the estimated heat transfer model is appropriate and the desired performance of the temperature controller is satisfied.

  • PDF