• Title/Summary/Keyword: dynamical systems

Search Result 444, Processing Time 0.024 seconds

Minimal systems analysis of mitochondria-dependent apoptosis induced by cisplatin

  • Hong, Ji-Young;Hara, Kenjirou;Kim, Jun-Woo;Sato, Eisuke F.;Shim, Eun Bo;Cho, Kwang-Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.4
    • /
    • pp.367-378
    • /
    • 2016
  • Recently, it was reported that the role of mitochondria-reactive oxygen species (ROS) generating pathway in cisplatin-induced apoptosis is remarkable. Since a variety of molecules are involved in the pathway, a comprehensive approach to delineate the biological interactions of the molecules is required. However, quantitative modeling of the mitochondria-ROS generating pathway based on experiment and systemic analysis using the model have not been attempted so far. Thus, we conducted experiments to measure the concentration changes of critical molecules associated with mitochondrial apoptosis in both human mesothelioma H2052 and their ${\rho}^0$ cells lacking mitochondrial DNA (mtDNA). Based on the experiments, a novel mathematical model that can represent the essential dynamics of the mitochondrial apoptotic pathway induced by cisplatin was developed. The kinetic parameter values of the mathematical model were estimated from the experimental data. Then, we have investigated the dynamical properties of this model and predicted the apoptosis levels for various concentrations of cisplatin beyond the range of experiments. From parametric perturbation analysis, we further found that apoptosis will reach its saturation level beyond a certain critical cisplatin concentration.

Design and Analysis of an Interactive Motion Simulator in Space Entertainment System

  • Hsu, Kuei-Shu;Cho, Wei-Ting;Lai, Chin-Feng;Wang, Xiaofei;Huang, Yueh-Min
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.1
    • /
    • pp.446-467
    • /
    • 2012
  • In this paper, the analysis and design of a motion simulator (based on the approach taken by interactive virtual reality (VR) entertainment systems) is conducted. The main components of the system include a bilateral control interface, simulation and a motion simulator control scheme. The space entertainment system uses a virtual environment that enables operators to feel the actual feedback sensing and distorted motion from the virtual environment, just as they would in the real environment. The space entertainment system integrates the dynamics of the motion simulator and the virtual environment and the operator maneuvers a steering wheel to interact with the system. The multiple bilateral control schemes employ a dynamical controller, which is designed by considering the velocity and acceleration that the operator imposes on the joystick, the environmental changes imposed on the motion simulator. In addition, we develop a calculated method to evaluate the Ratio of the simulation results. It is shown that the proposed control scheme can improve the performance of the visual entertainment system. Experiments are conducted on the virtual reality entertainment system to validate the theoretical developments.

Random dynamic analysis for simplified vehicle model based on explicit time-domain method

  • Huan Huang;Yuyu Li;Wenxiong Li;Guihe Tang
    • Coupled systems mechanics
    • /
    • v.12 no.1
    • /
    • pp.1-20
    • /
    • 2023
  • On the basis of the explicit time-domain method, an investigation is performed on the influence of the rotational stiffness and rotational damping of the vehicle body and front-rear bogies on the dynamic responses of the vehicle-bridge coupled systems. The equation of motion for the vehicle subsystem is derived employing rigid dynamical theories without considering the rotational stiffness and rotational damping of the vehicle body, as well as the front-rear bogies. The explicit expressions for the dynamic responses of the vehicle and bridge subsystems to contact forces are generated utilizing the explicit time-domain method. Due to the compact wheel-rail model, which reflects the compatibility requirement of the two subsystems, the explicit expression of the evolutionary statistical moment for the contact forces may be performed with relative ease. Then, the evolutionary statistical moments for the respective responses of the two subsystems can be determined. The numerical results indicate that the simplification of vehicle model has little effect on the responses of the bridge subsystem and the vehicle body, except for the responses of the rotational degrees of freedom for the vehicle subsystem, regardless of whether deterministic or random analyses are performed.

Synchronization and Secure Communication Application of Chaos Based Malasoma System (카오스 기반 Malasoma 시스템의 동기화 및 보안 통신 응용)

  • Jang, Eun-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.5
    • /
    • pp.747-754
    • /
    • 2017
  • Chaos-based secure communication systems are alternative of standard spread-spectrum systems that enable spreading the spectrum of the information signals and encrypting information signals with simple and inexpensive chaotic circuitry. In secure communication area, like Lorenz, Chua, Rossler, Duffing etc, classical systems are widely used. Malasoma chaotic system is topologically simple but their dynamical behaviors are non-linear synchronization and secure communication applications has not seen in paper. This paper aims for introducing a new chaotic system which is able to use as alternative to classical chaotic systems into secure communication fields. In addition, this new model simulates a synchronous communication system using P-C (Pecora-Carroll) method by verifying security with chaos signal through simulation. Modelling, synchronization and secure communication applications of Malasoma are realized respectively in MATLAB-Simulink environment. Retrieved results show that this novel chaotic system is able to use in secure communication fields.

An Analysis Methodology for Probabilistic Specification and Execution Prediction for Improving of Reliability of Fault-Tolerant Real-Time Systems (내고장 실시간 시스템의 신뢰도 향상을 위한 확률 명세 및 실행 예측 분석 방법)

  • Lee, Chol;Lee, Moon-Kun
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.12
    • /
    • pp.926-939
    • /
    • 2002
  • The formal specification methods with probability have been demanded in the area of fault real-time systems, in order to specify the uncertainty that the systems can encounter during their execution due to various environmental factors. This paper presents a new formal method with probability. namely Probabilistic Abstract Timed Machine (PATM), in order to analyze and predict system's behavior in dynamical environmental changes, This method classifies the factors into two classes: the variable and the constant. The analysis of system's behavior is performed on the probabilistic reachability graph generated from the ATM specification for the system. The analysis can predict any possibility that the behavior may not satisfy some safety requirements of the system, indicate which variable factors cause such satisfaction, and further recover from this unsatisfying fault state by fixing the variable factors. Consequently the reliability to the fault real-time systems can be improved.

Energy harvesting techniques for health monitoring and indicators for control of a damaged pipe structure

  • Cahill, Paul;Pakrashi, Vikram;Sun, Peng;Mathewson, Alan;Nagarajaiah, Satish
    • Smart Structures and Systems
    • /
    • v.21 no.3
    • /
    • pp.287-303
    • /
    • 2018
  • Applications of energy harvesting from mechanical vibrations is becoming popular but the full potential of such applications is yet to be explored. This paper addresses this issue by considering an application of energy harvesting for the dual objective of serving as an indicator of structural health monitoring (SHM) and extent of control. Variation of harvested energy from an undamaged baseline is employed for this purpose and the concept is illustrated by implementing it for active vibrations of a pipe structure. Theoretical and experimental analyses are carried out to determine the energy harvesting potential from undamaged and damaged conditions. The use of energy harvesting as indicator for control is subsequently investigated, considering the effect of the introduction of a tuned mass damper (TMD). It is found that energy harvesting can be used for the detection and monitoring of the location and magnitude of damage occurring within a pipe structure. Additionally, the harvested energy acts as an indicator of the extent of reduction of vibration of pipes when a TMD is attached. This paper extends the range of applications of energy harvesting devices for the monitoring of built infrastructure and illustrates the vast potential of energy harvesters as smart sensors.

Case study of random vibration analysis of train-bridge systems subjected to wind loads

  • Zhu, Siyu;Li, Yongle;Togbenou, Koffi;Yu, Chuanjin;Xiang, Tianyu
    • Wind and Structures
    • /
    • v.27 no.6
    • /
    • pp.399-416
    • /
    • 2018
  • In order to reveal the independent relationship between track irregularity and wind loads, the stochastic characteristics of train-bridge coupling systems subjected to wind loads were investigated by the multi-sample calculation. The vehicle was selected as 23 degrees of freedom dynamical model, and the bridge was described by three-dimensional finite element model. It was assumed that the wind loads were random processes with strong spatial correlation, while the track irregularities were stationary random ones. As a case study, a high-speed train running on a cable-stayed bridge subjected to wind loads was studied. The effect of rail irregularities was deemed to be independent of the effect of wind excitations on the coupling system in the same wind circumstance for the same project, leading to the conclusion that the effect of wind loads and moving vehicle could be calculated separately. The variance results of the stochastic responses of vehicle-bridge coupling system under the action of wind loads and rail irregularities together were equivalent to the sum of the variance of the responses induced by each excitation. Therefore, when one of the input excitations is different, only the effect of changed loads needs to be assessed. Moreover, the new calculated results were combined with the effect of unchanged loads to present the stochastic response of coupling system subjected to the different excitations, reducing the cost of computations. The stochastic characteristics, the CFD (cumulative distribution function) of the coupling system with different wind velocities, vehicle speed, and vehicle marshalling were studied likewise.

A New Class-Based Traffic Queue Management Algorithm in the Internet

  • Zhu, Ye
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.6
    • /
    • pp.575-596
    • /
    • 2009
  • Facing limited network resources such as bandwidth and processing capability, the Internet will have congestion from time to time. In this paper, we propose a scheme to maximize the total utility offered by the network to the end user during congested times. We believe the only way to achieve our goal is to make the scheme application-aware, that is, to take advantage of the characteristics of the application. To make our scheme scalable, it is designed to be class-based. Traffic from applications with similar characteristics is classified into the same class. We adopted the RED queue management mechanism to adaptively control the traffic belonging to the same class. To achieve the optimal utility, the traffic belonging to different classes should be controlled differently. By adjusting link bandwidth assignments of different classes, the scheme can achieve the goal and adapt to the changes of dynamical incoming traffic. We use the control theoretical approach to analyze our scheme. In this paper, we focus on optimizing the control on two types of traffic flows: TCP and Simple UDP (SUDP, modeling audio or video applications based on UDP). We derive the differential equations to model the dynamics of SUDP traffic flows and drive stability conditions for the system with both SUDP and TCP traffic flows. In our study, we also find analytical results on the TCP traffic stable point are not accurate, so we derived new formulas on the TCP traffic stable point. We verified the proposed scheme with extensive NS2 simulations.

A Semantic Analysis of the Indeterminacy in Contemporary Fashion - Focusing on Fashion Since 2000 - (현대 패션에 나타난 불확정성의 의미해석 - 2000년대 이후 패션을 중심으로 -)

  • Hwang, Hye-Jin;Kim, Min-Ja
    • Journal of the Korean Society of Costume
    • /
    • v.62 no.5
    • /
    • pp.1-15
    • /
    • 2012
  • In a fast changing postmodern society, contemporary fashion is becoming more complicated and ambiguous along with other genres of art than ever before. This phenomenon reigning as a sociocultural paradigm can be defined as 'indeterminacy' and it means 'undecidability'. The purpose of this study is to clarify and analyze the indeterminate characteristics of contemporary fashion reviewing the theoretical background and the architectural formativeness as a comparative research. The core idea of deconstructivism dismantles a causal relationship between function and form in fashion and the conventional notion about clothes. Complexity theory, which is the study of chaotic dynamical systems, suggests the creative idea and concept of infinite possibilities on a formative method. Meanwhile, catastrophe theory of discontinuous change can be used as interpretative strategies for the process of deconstruction and reconstruction. As a result of this study, the indeterminacy of fashion can be analyzed into five semantic categories: irregularity, immateriality, randomness, complexity and changeability. The intrinsic value of the indeterminacy in contemporary fashion is the interaction with a sociocultural ideology and a technological environment as well as an expansion of formative expression. To conclude, it can be said that the indeterminacy in fashion is a new interpretation of the relationship among body and space, clothes and society.

The Haar Function Approach for the Unknown Input Observer Design (미지입력 관측기 설계를 위한 하알함수 접근법)

  • 김진태;이한석;임윤식;김종부;이명규
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.3
    • /
    • pp.117-126
    • /
    • 2003
  • This paper proposes a real-time application of Walsh functions which is based on the on-line Walsh transformation and on-line Walsh function's differential operation. In the existing method of orthogonal functions, a major disadvantage is that process signals need to be recorded prior to obtaining their expansions. This paper proposes a novel method of Walsh transformation to overcome this shortcoming. And the proposed method apply to the unknown inputs observer(UIO) design for linear time-invariant dynamical systems