• 제목/요약/키워드: dynamic weight

검색결과 1,330건 처리시간 0.028초

경어뢰의 정특성 허용오차 산정 (An Evaluation of the Tolerance of the Static Characteristics for Light Weight Torpedoes)

  • 나영인
    • 한국군사과학기술학회지
    • /
    • 제5권2호
    • /
    • pp.149-158
    • /
    • 2002
  • Static Characteristics of the system, such as weight, center of gravity etc., are inspected and regulated through the whole design process of a light weight torpedo system, and the nominal condition of the characteristics is prescribed for standardization of manufacturing and fabrication. It is possible that a real system or assembled system has different static characteristics from that of the nominal condition. It is required to evaluate the tolerance of the static characteristics within which the performance of the system should not be contaminated by the static characteristics. In this paper, an evaluation method of the tolerance is described for light weight torpedo systems. The method is to check on the performance and related critical parameters of light weight torpedoes. The checking items are composed of general conditions of underwater mobile systems such as stability and dynamic sensitivity and specified performance requirements for light weight torpedoes.

경량 동적 코드 변환 기법을 이용한 동적 인스트루멘테이션 기법 설계 및 구현 (Design and Implementation of a Dynamic Instrumentation Framework based on Light-weight Dynamic Binary Translation)

  • 김지홍;이동우;김인혁;엄영익
    • 정보과학회 논문지
    • /
    • 제41권11호
    • /
    • pp.892-899
    • /
    • 2014
  • 동적 인스트루멘테이션 기법은 동적 코드 변환 기법을 사용하여 프로그램의 수행 흐름을 흐트러뜨리지 않으면서 분석 코드를 삽입하는 구현 기법으로 사용되고 있다. 기존의 동적 코드 변환 기법은 머신 코드 스트림을 중간 코드 형태로 파싱하고, 이를 일반적인 컴파일러 기법에 적용함으로써 코드를 변환한다. 이러한 방식의 코드 변환 과정에서 수반되는 높은 변환 오버헤드는 응답성이 높은 사용자 프로그램에 적용을 어렵게 한다. 본 논문에서는 변환 과정의 경량화를 통해 변환 오버헤드를 줄임으로써, 높은 동적 코드 변환 성능을 가지는 경량 동적 코드 변환 기법을 제안하고, 이를 기반으로 하는 동적 인스트루멘테이션 프레임워크를 제안한다. 제안 기법은 테이블 기반의 새로운 동적 주소 변환 기법으로 코드를 변환하고, 더불어 자주 실행되는 라이브러리 함수에 대해 변환 과정에 대해서는 주소 변환만을 함으로써 변환 오버헤드를 줄이는 변환 우회 기법을 이용한다. 기존 동적 코드 변환 기법과의 비교를 통해 2%~65%의 성능 향상을 확인하였다.

능동적 점성감쇠를 이용한 차량용 동적 흡진기의 모델링과 제어에 관한 연구 (A Study about Modeling and Control of Dynamic Absorber for Vehicle by Using Active Viscous Damping)

  • 김대원;배준영
    • 소음진동
    • /
    • 제9권1호
    • /
    • pp.121-130
    • /
    • 1999
  • Generally, A Dynamic Absorber by using Active viscous Damping is highlighted for effective suspension system, such as improved ride comfort and handling in the market. Lately, this system based on the Sky-Hook damper theory is introduced by the name of "Active Dynamic Absorber" to us. This system has an excellent performance in contrast to Passive. Adaptive Dynamic Absorber, besides having low cost components of system, low energy consumption. light weight of system. In this viewpoint. most of car-maker will adopt this system in the near future. For this reason, we developed Dynamic Absorber by using Active viscous Damping which is equipped with continuously variable Dynamic Absorber and Control logic consisting Filter and Estimator. control apparatus of Dynamic Absorber operated by 16-bit microprocessor of high performance. variable device of viscous Damping. G-sensor so on. In this paper. several important points of development procedure for realizing this system will be described with results in which is obtained from experiment by simulation and Full car test in Proving ground. respectively.pectively.

  • PDF

Hydro-forming 공정을 위한 동적-외연적 유한요소해석 (A Dynamic-explicit Finite Element Analysis for Hydro-forming Process)

  • 정동원;황재신
    • 동력기계공학회지
    • /
    • 제8권3호
    • /
    • pp.23-29
    • /
    • 2004
  • In this paper, a finite element formulation using dynamic-explicit time integration scheme is used for numerical analysis of Hydro-forming processes. The lumping scheme is employed for the diagonal mass matrix and dynamic explicit formulation. Hydro-forming process for auto-body panel forming is analyzed by using dynamic-explicit finite element method. Further, the simulated results of the Hydro-forming processes are shown and discussed. Its application is being increased especially in the automotive industrial area for the cost reduction, weight saving, and improvement of strength.

  • PDF

마찰시험기의 시스템 동적변수 변화에 따른 미끄럼마찰 특성 (Sliding Frictional Characteristics with the Change of Dynamic Parameters in the Friction Measurement)

  • 공호성;윤의성;권오관;오재응
    • Tribology and Lubricants
    • /
    • 제11권2호
    • /
    • pp.44-55
    • /
    • 1995
  • Frictional characteristics with the change of dynamic parameters, such as stiffness, inertia and damping, in the friction measurement at dry sliding surfaces were experimentally and theoretically investigated throughout the study. Dynamic frictional force and the variation in the normal load were mainly measured at the various conditions of system dynamic parameters with which stiffness in the normal direction, loading mechanisms and test materials were varied. For the normal load, mechanisms using both a dead weight and a pneumatic cylinder were applied, which resulted in change of the inertia and damping of the test rig. Test materials were steel, rosin and PTFE, which have different types of intrinsic frictional characteristics. Test results showed that frictional characteristics under different dynamic parameters could be different even though the operating variables were the same and also they could result in the variation in the normal load, which could consequently affect the wear mechanism.

헬리콥터 휠타입 착륙장치 충돌특성 연구 (Impact Dynamic Analysis for the Wheel-Type Landing Gear System of Helicopter)

  • 박효근;김동만;김동현;조윤모;정재훈
    • 한국군사과학기술학회지
    • /
    • 제11권5호
    • /
    • pp.12-22
    • /
    • 2008
  • In this study, the dynamic characteristics for the wheel-type landing gear system of helicopter have been analyzed. Nonlinear multi-body dynamic models of the landing gear system are constructed and the equations of motion, kinematics and internal forces of shock strut are considered. In addition, flexibility effect of the wheel axle with equivalent beam element is taken into account. General purpose commercial finite code, SAMCEF which includes MECANO module is applied. The results of dynamic simulation for various landing and weight conditions are presented and compared with each other. Based on the results, characteristics of impact dynamic behaviors of the landing gear system are practically investigated.

동적-외연적 유한요소법을 이용한 차체 판넬 성형해석에 관한 연구 (A Study of Auto-body Panel Correction of Forming Analysis that Use Dynamic-extensive Finite Element Method)

  • 정동원;황재신
    • 한국정밀공학회지
    • /
    • 제21권10호
    • /
    • pp.115-126
    • /
    • 2004
  • In the present work a finite element formulation using dynamic-explicit time integration scheme is used for numerical analysis of auto-body panel stamping processes. The lumping scheme is employed for the diagonal mass matrix and dynamic explicit formulation. Analyzed auto-body panel stomping process correction of forming using software called Dynaform using dynamic extensive method. Further, the simulated results for the auto-body panel stamping processes are shown and discussed. Its application is being increased especially in the automotive industrial area for the cost reduction, weight saving, and improvement of strength.

유압구동 로보트의 제어를 위한 유압 실린더 모델 파라미터 추정 (Dynamic Model Parameter Estimation of Hydraulic Cylinder for Robot Manipulator Control)

  • 최명환
    • 산업기술연구
    • /
    • 제16권
    • /
    • pp.113-121
    • /
    • 1996
  • In the early developmental stages of robotics,hydraulics played an important role. As the power-to-weight ratio of electric motors increased, they eventually replaced hydraulic actuators in robot manipulators. Recently, however, task requirements have dictated that the manipulator payload capacity increase to accomodate greater payload, greater length, greater reaction forces, and hydraulic actusators are being studied as an effective form of robot actuation again. For efficient control of hydraulic actuators, the knowledge of its dynamic equation is essential. However, the dynamic equation of hydraulic actuators are nonlinear, and the dynamic coefficients are time varying. In this paper, an estimation algorithm of the dynamic coefficients of the hydraulic piston dynamics are formulated. Simulation results are presented to show the possibility of the parameter estimation.

  • PDF

유연한 로보트 팔의 동적 모델링과 시뮬레이션 (Dynamic modeling and simulation of flexible robotic arms)

  • 김형옥;박세승;이정기;박종국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.248-253
    • /
    • 1992
  • In the development of a high speed and light weight manipulator, it is necessary to consider the structural elasticity of a robotic arm. The analysis of the infinite mode dynamic of robotic arm must be performed to obtain the finite mode modelling to achieve the feasible controller design of the robotic arm. The modelling procedure of the robotic arm is also illustrated. The controlled mode of the modelled dynamic can be derived by truncating the higher vibrational mode to result in the low order system for the sampling in the control signal is confined to the higher mode. And it is controlled by the pole assignment which can compensate the unmodelled dynamic effects. The unmodelled dynamic can result in the instability of the controlled system, which is known as spillover. The controller design of the low order system is simulated by the pole assignment and optimal control theory.

  • PDF

유연궤도를 고려한 자기부상열차 주행 시뮬레이션 (Simulation of a Maglev Vehicle Running on the Flexible Guideway)

  • 한형석;김영중;신병천;권정일
    • 한국철도학회논문집
    • /
    • 제9권4호
    • /
    • pp.499-503
    • /
    • 2006
  • Maglev vehicles, which are levitated and propelled by electromagnets, often run on elevated flexible guideways comprised of steel, aluminum and concrete. Therefore, an analysis of the dynamic interaction between the Maglev vehicle and the flexible guideway is needed in the design of the critical speed, ride, controller design and weight reduction of the vehicle. This study introduces a dynamic interaction simulation technique that applies structural dynamics. Because the proposed method uses detailed 3D FE models, it is useful to analyze the deformation of the elevated flexible guideway, the dynamic stress, and the motion of the vehicle. By applying the proposed method to an urban transit Maglev vehicle, UTM01, the dynamic response is simulated and validated. From the result of the study, we concluded that the simulation of dynamic interaction between the Maglev vehicle and the flexible guideway is possible and a potential of using computational mechanics.