• Title/Summary/Keyword: dynamic wave model

Search Result 438, Processing Time 0.026 seconds

Analysis of Lamb wave propagation on a plate using the spectral element method (스펙트럼 요소법을 이용한 판 구조물의 램파 전달 해석)

  • Lim, Ki-Lyong;Kim, Eun-Jin;Choi, Kwang-Kyu;Park, Hyun-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.71-81
    • /
    • 2008
  • This paper proposes a spectral element which can represent dynamic responses in high frequency domain such as Lamb waves on a thin plate. A two layer beam model under 2-D plane strain condition is introduced to simulate high-frequency dynamic responses induced by piezoelectric layer (PZT layer) bonded on a base plate. In the two layer beam model, a PZT layer is assumed to be rigidly bonded on a base beam. Mindlin-Herrmann and Timoshenko beam theories are employed to represent the first symmetric and anti-symmetric Lamb wave modes on a base plate, respectively. The Bernoulli beam theory and 1-D linear piezoelectricity are used to model the electro-mechanical behavior of a PZT layer. The equations of motions of a two layer beam model are derived through Hamilton's principle. The necessary boundary conditions associated with electro mechanical properties of a PZT layer are formulated in the context of dual functions of a PZT layer as an actuator and a sensor. General spectral shape functions of response field and the associated boundary conditions are formulated through equations of motions converted into frequency domain. A detailed spectrum element formulation for composing the dynamic stiffness matrix of a two layer beam model is presented as well. The validity of the proposed spectral element is demonstrated through comparison results with the conventional 2-D FEM and the previously developed spectral elements.

  • PDF

Dynamic impedance of a 3×3 pile-group system: Soil plasticity effects

  • Gheddar, Kamal;Sbartai, Badreddine;Messioud, Salah;Dias, Daniel
    • Structural Engineering and Mechanics
    • /
    • v.83 no.3
    • /
    • pp.377-386
    • /
    • 2022
  • This paper considers dynamic impedance functions and presents a detailed analysis of the soil plasticity influence on the pile-group foundation dynamic response. A three-dimensional finite element model is proposed, and a calculation method considering the time domain is detailed for the nonlinear dynamic impedance functions. The soil mass is modeled as continuum elastoplastic solid using the Mohr-Coulomb shear failure criterion. The piles are modeled as continuum solids and the slab as a structural plate-type element. Quiet boundaries are implemented to avoid wave reflection on the boundaries. The model and method of analysis are validated by comparison with those published on literature. Numerical results are presented in terms of horizontal and vertical nonlinear dynamic impedances as a function of the shear soil parameters (cohesion and internal friction angle), pile spacing ratio and frequencies of the dynamic signal.

Numerical and experimental study on dynamic response of moored spar-type scale platform for floating offshore wind turbine

  • Choi, E.Y.;Cho, J.R.;Cho, Y.U.;Jeong, W.B.;Lee, S.B.;Hong, S.P.;Chun, H.H.
    • Structural Engineering and Mechanics
    • /
    • v.54 no.5
    • /
    • pp.909-922
    • /
    • 2015
  • The dynamic response and the mooring line tension of a 1/75 scale model of spar-type platform for 2.5 MW floating offshore wind turbine subject to one-dimensional regular harmonic wave are investigated numerically and verified by experiment. The upper part of wind turbine which is composed of three rotor blades, hub and nacelle is modeled as a lumped mass the scale model and three mooring lines are pre-tensioned by means of linear springs. The coupled fluid-rigid body interaction is numerically simulated by a coupled FEM-cable dynamics code, while the experiment is performed in a wave tank with the specially-designed vision and data acquisition system. The time responses of surge, heave and pitch motions of the scale platform and the mooring line tensions are obtained numerically and the frequency domain-converted RAOs are compared with the experiment.

Dynamic Simulation of KTX Catenary System for Changing Design Parameters (설계변수 변화에 따른 KTX 가선계의 동적응답 해석)

  • 김정수;박성훈
    • Journal of KSNVE
    • /
    • v.11 no.2
    • /
    • pp.346-353
    • /
    • 2001
  • In this study dynamic characteristic of catenary system that supplies electrical power to KTX Korean high-speed trains are investigated. A simulation program based on 3-span and 6-span finite element models of the catenary is developed. The influences of the various design parameters on the dynamic responses of the catenary are determined. The main design parameters include tension on the contact and messenger wires and the stiffness of the droppers connecting the two wires. The vibrational responses are primarily determined by the reflections of the propagating wave, and the dropper stiffness is found to be the dominant factor that influences overall dynamic characteristics of the catenary.

  • PDF

A study on the Dynamic Response Analysis of Floating Offshore Barge (부유체식 바지선의 동적 응답해석에 관한 연구)

  • 박성현;박석주
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.973-979
    • /
    • 2002
  • Recently, floating offshore structure is studied as one of the effective utilization of the ocean space. And floating structure are now being considered for various applications such as floating airports, offshore cities and so on. The analysis of the dynamic response as it receives regular wave is studied. The finite element method is used in the analysis of structural section of this model. And the analysis is carried out using the boundary element method in the fluid division. In order to know the characteristics of the dynamic response of the floating structures, effects of wavelength, water depth, and wave direction on dynamic response of the floating structure are studied by use of numerical calculation.

  • PDF

Development of an Expert System for Nondestructive Evaluation of Tunnel Lining (터널 라이닝의 비파괴 평가를 위한 전문가시스템 개발)

  • 김문겸;허택녕;이재영;김도훈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.413-420
    • /
    • 1998
  • In this study, an expert system is developed to evaluate a safety of tunnel structures. Using a dynamic finite element analysis module, this expert system predicts dynamic responses of a concrete lining surface which a transient force is applied on and estimates the condition between the concrete lining and surrounding ground. The evaluation parameter values of the module are multi-reflected wave frequency and amplitude of the dynamic responses. The multi-reflected wave frequency represents the depth of concrete lining, and the other parameter, the amplitude of the frequency, is utilized for detecting the internal flaws. A comparison of the dynamic responses between numerical and experimental model test verifies an effectiveness of this system. By this expert system, the safety of tunnel structures and the detection of internal flaws of concrete linings are estimated quantitatively.

  • PDF

Ultrasonic Distance Measurement Method by Using the Envelope Model of Received Signal Based on System Dynamic Model of Ultrasonic Transducers

  • Choe, Jin-Hee;Lee, Kook-Sun;Choy, Ick;Cho, Whang
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.981-988
    • /
    • 2018
  • In order to acquire an accurate TOF, this paper proposes a method that produces TOF by using a mathematical model for the envelope of the received signal obtained from a system dynamic model of ultrasonic transducer. The proposed method estimates the arrival time of the received signal retrospectively by comparing its wave form obtained after triggering point with its mathematical envelope model. Experimental result shows that the error due to variation of triggering point can be dramatically decreased by implementing the proposed method.

Dynamic responses on traditional Chinese timber multi-story building with high platform base under earthquake excitations

  • Zhang, Xicheng;Ma, Hui;Zhao, Yanli;Zhao, Hongtie
    • Earthquakes and Structures
    • /
    • v.19 no.5
    • /
    • pp.331-345
    • /
    • 2020
  • The multi-story timber structure with high platform base is one of the important architectural types in the traditional Chinese buildings. To study the dynamic characteristics and seismic responses on this kind of traditional structure, the 3-D finite element models of Xi'an drum tower which included the high platform base, upper timber structure and whole structure was established considering the structural form and material performance parameters of the structure in this study. By the modal analysis, the main frequencies and mode shapes of this kind of traditional building were obtained and investigated. The three kinds of earthquake excitations included El-Centro wave, Taft wave and Lanzhou wave were separately imposed on the upper timber structure model and the overall structure model, and the seismic responses on the tops of columns were analyzed. The results of time history analysis show that the seismic response of the upper timber structure is obviously amplified by high platform base. After considering the effect of high platform base, the mean value on the lateral displacement increments of the top column in the overall structure is more than 20.478% and the increase of dynamic coefficients was all above 0.818 under the above three different earthquake excitations. Obviously, it shows that the existence of high platform base has a negative influence on the seismic responses of upper timber structure. And the high platform base will directly affect the safety of the upper timber structure. Therefore, the influence of high platform base on the dynamic response of its upper timber structure cannot be neglected.

An approximate spectral element model for the dynamic analysis of an FGM bar in axial vibration

  • Lee, Minsik;Park, Ilwook;Lee, Usik
    • Structural Engineering and Mechanics
    • /
    • v.61 no.4
    • /
    • pp.551-561
    • /
    • 2017
  • As FGM (functionally graded material) bars which vibrate in axial or longitudinal direction have great potential for applications in diverse engineering fields, developing a reliable mathematical model that provides very reliable vibration and wave characteristics of a FGM axial bar, especially at high frequencies, has been an important research issue during last decades. Thus, as an extension of the previous works (Hong et al. 2014, Hong and Lee 2015) on three-layered FGM axial bars (hereafter called FGM bars), an enhanced spectral element model is proposed for a FGM bar model in which axial and radial displacements in the radial direction are treated more realistic by representing the inner FGM layer by multiple sub-layers. The accuracy and performance of the proposed enhanced spectral element model is evaluated by comparison with the solutions obtained by using the commercial finite element package ANSYS. The proposed enhanced spectral element model is also evaluated by comparison with the author's previous spectral element model. In addition, the effects of Poisson's ratio on the dynamics and wave characteristics in example FGM bars are numerically investigated.

Analytical fragility curves of a structure subject to tsunami waves using smooth particle hydrodynamics

  • Sihombing, Fritz;Torbol, Marco
    • Smart Structures and Systems
    • /
    • v.18 no.6
    • /
    • pp.1145-1167
    • /
    • 2016
  • This study presents a new method to computes analytical fragility curves of a structure subject to tsunami waves. The method uses dynamic analysis at each stage of the computation. First, the smooth particle hydrodynamics (SPH) model simulates the propagation of the tsunami waves from shallow water to their impact on the target structure. The advantage of SPH over mesh based methods is its capability to model wave surface interaction when large deformations are involved, such as the impact of water on a structure. Although SPH is computationally more expensive than mesh based method, nowadays the advent of parallel computing on general purpose graphic processing unit overcome this limitation. Then, the impact force is applied to a finite element model of the structure and its dynamic non-linear response is computed. When a data-set of tsunami waves is used analytical fragility curves can be computed. This study proves it is possible to obtain the response of a structure to a tsunami wave using state of the art dynamic models in every stage of the computation at an affordable cost.