• Title/Summary/Keyword: dynamic wave model

Search Result 435, Processing Time 0.024 seconds

Coastal Protection with the Submerged Artificial Bio-reefs (인공 Bio-reef에 의한 해변침식방지)

  • Lee Hun;Lee Joong-Woo;Lee Hak-Sung;Kim Kang-Min
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.11a
    • /
    • pp.159-166
    • /
    • 2004
  • The beach, a margin between the sea and the land, is an extremely dynamic zone, for it is here that the motion of the sea interacts with the sediment, rock of the land or the artificial barriers. In order to prohibit or retard erosions due to the extreme Typhoon or storm induced waves, man has constructed these of temporary or more permanent nature, but they caused problems of other erosions from the secondary effect of them and a bad influence on the seascape. In considering the energy available to accelerate sediment transport and erosion in the surf zone, where the waves are broken, and offshore beyond the breaker line, the wave height and the wave period should be taken account. Hence, we tried to present an applicability of the submerged artificial Bio-reefs analyzing waves by a numerical model such that they could reduce the wave power without the secondary effect and restoration of marine ecologies. A new technique of beach preservation is by artificial reefs with artificial and/or natural kelps or sea plants. By engineering the geometry of the nearshore reef, the wave attenuation ability of the feature can be optimized Higher, wider and longer reefs provide the greatest barrier against wave energy but material volumes, navigation hazards, placement methods and other factors require engineering considerations for the overall design of the nearshore reefs.

  • PDF

Experimental and numerical study on coupled motion responses of a floating crane vessel and a lifted subsea manifold in deep water

  • Nam, B.W.;Kim, N.W.;Hong, S.Y.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.5
    • /
    • pp.552-567
    • /
    • 2017
  • The floating crane vessel in waves gives rise to the motion of the lifted object which is connected to the hoisting wire. The dynamic tension induced by the lifted object also affects the motion responses of the floating crane vessel in return. In this study, coupled motion responses of a floating crane vessel and a lifted subsea manifold during deep-water installation operations were investigated by both experiments and numerical calculations. A series of model tests for the deep-water lifting operation were performed at Ocean Engineering Basin of KRISO. For the model test, the vessel with a crane control system and a typical subsea manifold were examined. To validate the experimental results, a frequency-domain motion analysis method is applied. The coupled motion equations of the crane vessel and the lifted object are solved in the frequency domain with an additional linear stiffness matrix due to the hoisting wire. The hydrodynamic coefficients of the lifted object, which is a significant factor to affect the coupled dynamics, are estimated based on the perforation value of the structure and the CFD results. The discussions were made on three main points. First, the motion characteristics of the lifted object as well as the crane vessel were studied by comparing the calculation results. Second, the dynamic tension of the hoisting wire were evaluated under the various wave conditions. Final discussion was made on the effect of passive heave compensator on the motion and tension responses.

Analysis of Reservoir Seismic Response Acceleration Amplification Characteristics Using Seismic Measurements Data (지진계측 기록을 이용한 저수지 지진응답가속도 증폭 특성 분석)

  • Lee, Moojae;Kim, Yongseong;Tamang, Bibek;Lee, Seungjoo;Lee, Gilyong;Heo, Joon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.4
    • /
    • pp.51-63
    • /
    • 2020
  • In this study, the model test of a reservoir was performed through a dynamic analysis method by using the data obtained from seismometers. Besides, we analyzed the behavior of the seismic acceleration amplification by reservoir height. To test the model, the data measured by the seismometers were applied at the foundation of the reservoir as input data, and the results from the analysis were compared with the data measured at the dam crest. The analysis results manifest that the peak values and the trend of the seismic wave obtained from the numerical analysis are in good agreement with the measured data. Also, the acceleration amplification ratio was proportional to the reservoir height and the magnitude of the earthquake. Through this study, the dynamic analysis method, which is based on the cyclic elastoplastic constitutive equation, can be considered as an appropriate technique to analyse the seismic behavior by the application of the data obtained from the seismometers installed in the reservoir. Also, the applicability of the seismometers can be enhanced through this technique in the future.

A Study on the Vibration Analysis for the Composite Multi-axial Optical Structure of an Aircraft (항공기용 복합재료 다축 광학 구조의 진동해석에 관한 연구)

  • Kim, Dae-Young;Kwak, Jae-Hyuck;Lee, Jun-Ho;Park, Kwang-Woo;Jeong, Kwang-Young;Cheon, Seong-Sik
    • Composites Research
    • /
    • v.24 no.2
    • /
    • pp.14-21
    • /
    • 2011
  • In this paper, a dynamic model is proposed for multi-axis optical structure of an aircraft. Modal analysis, sine-wave analysis, and random vibration analysis are done using a multi-body dynamic program for the multi-axis optical structure. By applying Al 6061-T6 and two types of CFRP to the camera module, x, y, and z responses are found and compared according to each axis excitation. The results will be used for reducing the weight of the camera module.

Mitigation of seismic collision between adjacent structures using roof water tanks

  • Mahmoud, Sayed
    • Earthquakes and Structures
    • /
    • v.18 no.2
    • /
    • pp.171-184
    • /
    • 2020
  • The potential of using the roof water tanks as a mitigation measure to minimize the required separation gap and induced pounding forces due to collisions is investigated. The investigation is carried out using nonlinear dynamic analysis for two adjacent 3-story buildings with different dynamic characteristics under two real earthquake motions. For such analysis, nonlinear viscoelastic model is used to simulate forces due to impact. The sloshing force due to water movement is modelled in terms of width of the water tank and the instantaneous wave heights at the end wall. The effect of roof water tanks on the story's responses, separation gap, and magnitude and number of induced pounding forces are investigated. The influence of structural stiffness and storey mass are investigated as well. It is found that pounding causes instantaneous acceleration pulses in the colliding buildings, but the existence of roof water tanks eliminates such acceleration pulses. At the same time the water tanks effectively reduce the number of collisions as well as the magnitude of the induced impact forces. Moreover, buildings without constructed water tanks require wider separation gap to prevent pounding as compared to those with water tanks attached to top floor under seismic excitations.

A Study of Natural Frequency in Steel Wind Turbine Tower according to the RNA Model (강재 풍력 터빈 타워의 상부구조 모델링 방법에 따른 고유진동수 특성에 대한 고찰)

  • Lee, Yun-Woo;Choi, Jun-Ho;Kang, Sung-Yong;Kang, Young-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.3
    • /
    • pp.37-42
    • /
    • 2014
  • Wind turbine tower has a very important role in wind turbine system as one of the renewable energy that has been attracting attention worldwide recently. Due to the growth of wind power market, advance and development of offshore wind system and getting huger capacity is inevitable. As a result, the vibration is generated at wind turbine tower by receiving constantly dynamic loads such as wind load and wave load. Among these dynamic loads, the mechanical load caused by the rotation of the blade is able to make relatively periodic load to the wind turbine tower. So natural frequency of the wind turbine tower should be designed to avoid the rotation frequency of the rotor according to the design criteria to avoid resonance. Currently research of the wind turbine tower, the precise research does not be carried out because of simplifying the structure of the other upper and lower. In this study, the effect of blade modeling differences are to be analyzed in natural frequency of wind turbine tower.

Seismic response analysis of an unanchored vertical vaulted-type tank

  • Zhang, Rulin;Cheng, Xudong;Guan, Youhai;Tarasenko, Alexander A.
    • Earthquakes and Structures
    • /
    • v.13 no.1
    • /
    • pp.67-77
    • /
    • 2017
  • Oil storage tanks are vital life-line structures, suffered significant damages during past earthquakes. In this study, a numerical model for an unanchored vertical vaulted-type tank was established by ANSYS software, including the tank-liquid coupling, nonlinear uplift and slip effect between the tank bottom and foundation. Four actual earthquakes recorded at different soil sites were selected as input to study the dynamic characteristics of the tank by nonlinear time-history dynamic analysis, including the elephant-foot buckling, the liquid sloshing, the uplift and slip at the bottom. The results demonstrate that, obvious elephant-foot deformation and buckling failure occurred near the bottom of the tank wall under the seismic input of Class-I and Class-IV sites. The local buckling failure appeared at the location close to the elephant-foot because the axial compressive stress exceeded the allowable critical stress. Under the seismic input of Class-IV site, significant nonlinear uplift and slip occurred at the tank bottom. Large amplitude vertical sloshing with a long period occurred on the free surface of the liquid under the seismic wave record at Class-III site. The seismic properties of the storage tank were affected by site class and should be considered in the seismic design of large tanks. Effective measures should be taken to reduce the seismic response of storage tanks, and ensure the safety of tanks.

An auto weather-vaning system for a DP vessel that uses a nonlinear controller and a disturbance observer

  • Kim, Dae Hyuk;Kim, Nakwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.1
    • /
    • pp.98-118
    • /
    • 2014
  • An auto weather-vaning system for a Dynamic Positioning (DP) vessel is proposed. When a DP vessel is operating, its position keeping is hindered by ocean environmental disturbances which include the ocean current, wave and wind. Generally, most ocean vessels have a longitudinal length that is larger than the transverse width. The largest load acts on the DP vessel by ocean disturbances, when the disturbances are incoming in the transverse direction. Weather-vaning is the concept of making the heading angle of the DP vessel head toward (or sway from) the disturbance direction. This enables the DP vessel to not only perform marine operations stably and safely, but also to maintain its position with minimum control forces (surge & sway components). To implement auto weather-vaning, a nonlinear controller and a disturbance observer are used. The disturbance observer transforms a real plant to the nominal model without disturbance to enhance the control performance. And the nonlinear controller deals with the kinematic nonlinearity. The auto weather-vaning system is completed by adding a weather-vaning algorithm to disturbance based controller. Numerical simulations of a semi-submersible type vessel were performed for the validation. The results show that the proposed method enables a DP vessel to maintain its position with minimum control force.

The effect of blast-induced vibration on the stability of underground water-sealed gas storage caverns

  • Zhou, Yuchun;Wu, Li;Li, Jialong;Yuan, Qing
    • Geosystem Engineering
    • /
    • v.21 no.6
    • /
    • pp.326-334
    • /
    • 2018
  • Underground water-sealed gas storage caverns have become the primary method for strategic storage of LPG. Previous studies of excavation blasting effects on large-scale underground water-sealed gas storage caverns are rare at home and abroad. In this paper, the blasting excavation for underground water-sealed propane storage caverns in Yantai was introduced and field tests of blasting vibration were carried out. Field test data showed that the horizontal radial velocity had a major controlling effect in the blasting vibration and frequencies would not cause the vibration velocity concentration effects. In terms of the influence of blasting vibration on adjacent caverns, the dynamic finite element model in LS-DYNA soft was established, whose reliability was verified by field test data. The numerical results indicated the near-blasting side was primary zone for the structural failure and tensile failure tended to occur in the middle of the curved wall on the near-blasting side. Meanwhile, the safety criterions for adjacent caverns based on stress wave theory and according to statistic relationship between peak effective tensile stress and peak particle velocities were obtained, respectively. Finally, with Safety Regulations for Blasting in China (GB6722-2014) taken into account, a final safety criterion was proposed.

Acoustic Interface Element on Nonconformal Finite Element Mesh for Fluid-Structure Interaction Problem (비적합 유한요소망에 적용가능한 유체-구조물 연결 요소)

  • Cho, Jeong-Rae;Lee, Jin Ho;Cho, Keunhee;Yoon, Hyejin
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.163-170
    • /
    • 2023
  • In the fluid-structure interaction analysis, the finite element formulation is performed for the wave equation for dynamic fluid pressure, and the dynamic pressure is defined as a degree of freedom at the fluid nodes. Therefore, to connect the fluid to the structure, it is necessary to connect the degree of freedom of fluid dynamic pressure and the degree of freedom of structure displacement through an interface element derived from the relationship between dynamic pressure and displacement. The previously proposed fluid-structure interface elements use conformal finite element meshes in which the fluid and structure match. However, it is challenging to construct conformal meshes when complex models, such as water purification plants and wastewater treatment facilities, are models. Therefore, to increase modeling convenience, a method is required to model the fluid and structure domains by independent finite element meshes and then connect them. In this study, two fluid-structure interface elements, one based on constraints and the other based on the integration of nonsmooth functions, are proposed in nonconformal finite element meshes for structures and fluids, and their accuracy is verified.