• Title/Summary/Keyword: dynamic tuning

Search Result 290, Processing Time 0.027 seconds

Adaptive-Tuning of PID Controller using Self-Recurrent Neural Network (자기순환 신경망을 이용한 PID 제어기의 적응동조)

  • 박광현;허진영;하홍곤
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2001.06a
    • /
    • pp.121-124
    • /
    • 2001
  • In industrial actual control system, PID controller has been used with its high delicate control system in position control system. PID controller has simple structure and superior ability in several characteristics. When the response of system is changed by delay time, variable load , disturbances and external environment, control gain of PID controller must be readjusted on the system dynamic characteristics. Therefore, a control ability of PID controller is degraded when th control gain is inappropriately determined. When the response characteristic of system is changed under a condition, control gain of PID controller must be changed adaptively to be a waited response of system. In this paper an adaptive-tuning type PID controller is constructed by self-recurrent Neural Network(SRNN). applying back-propagation(BP) algorithm. Form the result of computer simulation in the proposed controller, its usefulness is verified.

  • PDF

Adaptive Controller Design of the Flexible Robotic Manipulator (유연한 로보트 매니퓰레이터의 적응 제어기 설계)

  • 김승록;박종국
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.3
    • /
    • pp.25-34
    • /
    • 1992
  • This paper proposes a Self-Tuning control algorithm for tracking the reference trajectory by measuring the end-point of robot manipulator whose links are light and flexible, and the performance of it is tested through the computer simulation. As an object of system, a flexible robot manipulator with two-links is considered and an assumed mode shape method including gravity force is adopted to analyze the vibration modes for each links and dynamics equation is derived. The controller is designed as a combined form which consists of dynamic feedforward compensator and self-tuning feedback controller. The one supplies nominal torque and the other supplies variational torque to manipulator. Apart from the, K-incremental predictor is also proposed in order to eliminate the offset error. and it shows that the result of simulation adapted well to load change and rapid velocity.

  • PDF

Development of IDS Program for Tuning Power System Controllers (전력시스템 제어기 튜닝을 위한 IDS 프로그램 개발)

  • Kim, D.J.;Kim, J.S.;Moon, Y.H.
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.38-40
    • /
    • 2003
  • This paper describes the integrated dynamic stability(IDS) program for tuning the power system controllers, such as PSS, AVR and so on. IDS consists of three modules; power flow module, PWRLF, to calculate large scale power system load flow solutions, IDS/PSS module to calculate eigenvalues and frequency response in the range of frequency from 0.2Hz to 2Hz, and IDS/NEA module to calculate eigenvalues in the range of frequency from 5.0Hz to 55Hz. In addition, IDS provides graphic user interface(GUI) in order to let the user handle and analyze the input data and the results of calculation with convenience.

  • PDF

Vector Control of an Induction Motors for the Field Weakening Region With the Tuning of the Magnetizing Inductance (자화인덕턴스 추정을 이용한 약계자 영역에서의 유도전동기 벡터제어)

  • Choi, D.H.;Hyun, D.S.
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.311-313
    • /
    • 1996
  • In case of field weakening region, the dynamic behavior of the speed controller depends on the rotor flux level. In this region, the flux is decreased inversely proportional to the rotor speed. As the rotor flux is decreased, as the magnetizing inductance is increased. In this paper, the effect of this increased magnetizing inductance to the performance of vector control is illustrated. The stationary reference frame torque not including the magnetizing inductance is calculated by stationary stator flux, and the rotating reference frame torque including the magnetizing inductance is calculated by rotating rotor flux. If the magnetizing inductance value is constant, two torque values are same regardless of the flux-component current. However, if the magnetizing inductance is varied, those two values are different. The paper presents the new tuning scheme of the magnetizing inductance using the difference between the stationary and rotating torque. Computer simulation demonstrates the efficacy of the proposed scheme.

  • PDF

Investigation on the Vibration Characteristics of a Symmetric 2DOF Polysilicon Resonator (대칭형 2자유도의 폴리실리콘 공진 구조체에 대한 진동특성 분석)

  • Hong, Yun-Sik;Lee, Jong-Hyeon;Kim, Su-Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.81-87
    • /
    • 2000
  • A new resonator that is fabricated by single polysilicon layer process is presented. The resonator can move in two orthogonal direction on the plane parallel to the substrate. And the resonant frequencies of the two modes are intrinsically designed to be identical since the overall structure of the resonator is symmetric about the two directions of motion. Since the resonator ideally has two identical vibration mode, it can be applied to various micro-devices that requires multi DOF motion, especially to microgyroscopes. To investigate the feasibility of application of the resonator, dynamic model of the resonator including the nonlinear behavior of driving electrodes is derived and evaluated with the fabricated one, and the self-tuning characteristics are proved though experiments.

  • PDF

Study on Optimum Modification Method of Dynamic Charcteristics of Ship Structures by Multi-level Optimization (다단계최적화방법에 의한 선박구조물의 동특성의 최적변경법에 관한연구)

  • 박석주
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.574-582
    • /
    • 1999
  • This paper discusses the multi-level optimization method in dynamic optimization problems through stiffened plate of ship structures. In structural optimization the computational cost increases rapidly as the number of design variables increases. And we need a great amount of cal-culation and time on problems of modified dynamic characteristics of large and complicated struc-tures. In this paper the multi-level optimization is proposed which decreases computational time and cost. the dynamic optimum designs of stiffened plate that control the natural frequency and minimize weight subjected to constraints condition are derived. The way to apply the multi-level optimization methods in this study follow: In the first step the dynamic characteristics is controlled for the two-dimensional model of stiffened plate by sensitivity analysis and quasi-least squares methods. In the second step the cross-section of the stiffener is decided so that the weight is minimized under needed constraints by the steepest descent or ascent method. In the third the three-dimensional model is made based on the results of the first step and the second step confirmation and finer tuning of the objective function are carried out. It is shown that the results are effective in the optimum modification for dynamic characteristics of the stiffened plate.

  • PDF

Current Control of Switched Reluctance Motor Using Self-tuning Fuzzy Controller (자기동조 퍼지 제어기를 이용한 스위치드 릴럭턴스 모터의 전류제어)

  • Lee, Young-Soo;Kim, Jaehyuck;Oh, Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.473-479
    • /
    • 2016
  • This paper describes an accurate and stable current control method of switched reluctance motors(SRMs), which have recently attracted considerable wide attention owing to their favorable features, such as high performance, high durability, structural simplicity, low cost, etc. In most cases, the PI controllers(PICC) have been used mostly for the current control of electric motors because their algorithm and selection of controller gain are relatively simpler compared to other controllers. On the other hand, the PI controller requires an adjustment of the controller gains for each operating point when nonlinear system parameters change rapidly. This paper presents a stable current control method of an SRM using self-tuning fuzzy current controller(STFCC) under nonlinear parameter variation. The performance of the considered method is validated via a dynamic simulation of the current controlled SRM drive using Matlab/Simulink program.

Auto Tuning of Position Controller for Proportional Flow Control Solenoid Valve (비례유량제어밸브 위치제어기 자동조정)

  • Jung, Gyu-Hong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.7
    • /
    • pp.797-803
    • /
    • 2012
  • Proportional solenoid valves are a modulating type that can control the displacement of valves continuously by means of electromagnetic forces proportional to the solenoid coil current. Because the solenoid-type modulating valves have the advantages of fast response and compact design over air-operated or motor-operated valves, they have been gaining acceptance in chemical and power plants to control the flow of fluids such as water, steam, and gas. This paper deals with the auto tuning of the position controller that can provide the proportional and integral gain automatically based on the dynamic system identification. The process characteristics of the solenoid valve are estimated with critical gain and critical period at a stability limit based on implemented relay feedback, and the controller parameters are determined by the classical Ziegler-Nichols design method. The auto-tuning algorithm was verified with experiments, and the effects of the operating point at which the relay control is activated as well as the relay amplitude were investigated.

Dynamic Mode Tuning of Ultrasonic Guided Wave Using an Array Transducer (배열 탐촉자를 사용한 유도초음파의 모드선정 기법)

  • Kim, Young-H.;Song, Sung-Jin;Park, Joon-Soo;Kim, Jae-Hee;Eom, Heung-Sup
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.1
    • /
    • pp.20-26
    • /
    • 2005
  • Ultrasonic guided waves have been widely employed for long range inspection of structures such as plates, rods and pipes. There are numerous modes with different wave velocities, and the appropriate mode selection is one of key techniques in the application of guided waves. In the present work, phase tuning by an array transducer was applied to generate ultrasonic guided waves. For this purpose, 8-channel ultrasonic pulser/receiver and their controller which enables sequential activation of each channels with given time delay were developed. Eight transducers were fabricated in order to generate guided waves by using an array transducer. The selective tuning of wave mode can be achieved by changing the interval between elements of an array transducer.

The Design of Auto Tuning Neuro-Fuzzy PID Controller Based Neural Network (신경회로망 기반 자동 동조 뉴로-퍼지 PID 제어기 설계)

  • Kim, Young-Sik;Lee, Chang-Goo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.5
    • /
    • pp.830-836
    • /
    • 2006
  • In this paper described an auto tuning neuro-fuzzy PID controller based neural network. The PID type controller has been widely used in industrial application due to its simply control structure, easy of design, and inexpensive cost. However, control performance of the PID type controller suffers greatly from high uncertainty and nonlinearity of the system, large disturbances and so on. In this paper will design to take advantage of neural network fuzzy theory and pid controller auto toning technique. The value of initial scaling factors of the proposed controller were determined on the basis of the conventional PID controller parameters tuning methods and then they were adjusted by using neural network control techniques. This controller simple structure and computational complexity are less, and also application is easy and performance is excellent in system that is strong and has nonlinearity to system dynamic behaviour change or disturbance. Finally, the proposed auto tuning neuro-fuzzy controller is applied to magnetic levitation. Simulation results demonstrated that the control performance of the proposed controller is better than that of the conventional controller.

  • PDF