• 제목/요약/키워드: dynamic technology

검색결과 8,401건 처리시간 0.038초

A Dynamic Adjustment Method of Service Function Chain Resource Configuration

  • Han, Xiaoyang;Meng, Xiangru;Yu, Zhenhua;Zhai, Dong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권8호
    • /
    • pp.2783-2804
    • /
    • 2021
  • In the network function virtualization environment, dynamic changes in network traffic will lead to the dynamic changes of service function chain resource demand, which entails timely dynamic adjustment of service function chain resource configuration. At present, most researches solve this problem through virtual network function migration and link rerouting, and there exist some problems such as long service interruption time, excessive network operation cost and high penalty. This paper proposes a dynamic adjustment method of service function chain resource configuration for the dynamic changes of network traffic. First, a dynamic adjustment request of service function chain is generated according to the prediction of network traffic. Second, a dynamic adjustment strategy of service function chain resource configuration is determined according to substrate network resources. Finally, the resource configuration of a service function chain is pre-adjusted according to the dynamic adjustment strategy. Virtual network functions combination and virtual machine reusing are fully considered in this process. The experimental results show that this method can reduce the influence of service function chain resource configuration dynamic adjustment on quality of service, reduce network operation cost and improve the revenue of service providers.

Efficient Solving Methods Exploiting Sparsity of Matrix in Real-Time Multibody Dynamic Simulation with Relative Coordinate Formulation

  • Choi, Gyoojae;Yoo, Yungmyun;Im, Jongsoon
    • Journal of Mechanical Science and Technology
    • /
    • 제15권8호
    • /
    • pp.1090-1096
    • /
    • 2001
  • In this paper, new methods for efficiently solving linear acceleration equations of multibody dynamic simulation exploiting sparsity for real-time simulation are presented. The coefficient matrix of the equations tends to have a large number of zero entries according to the relative joint coordinate numbering. By adequate joint coordinate numbering, the matrix has minimum off-diagonal terms and a block pattern of non-zero entries and can be solved efficiently. The proposed methods, using sparse Cholesky method and recursive block mass matrix method, take advantages of both the special structure and the sparsity of the coefficient matrix to reduce computation time. The first method solves the η$\times$η sparse coefficient matrix for the accelerations, where η denotes the number of relative coordinates. In the second method, for vehicle dynamic simulation, simple manipulations bring the original problem of dimension η$\times$η to an equivalent problem of dimension 6$\times$6 to be solved for the accelerations of a vehicle chassis. For vehicle dynamic simulation, the proposed solution methods are proved to be more efficient than the classical approaches using reduced Lagrangian multiplier method. With the methods computation time for real-time vehicle dynamic simulation can be reduced up to 14 per cent compared to the classical approach.

  • PDF

연료전지 트럭의 운전 부하 패턴에 따른 고분자 연료전지 스택의 동특성 시뮬레이션 (Dynamic Simulation of Proton Exchange Membrane Fuel Cell Stack under Various Operating Pattern of Fuel Cell Powered Heavy Duty Truck)

  • 손나민;무자히드 나심;김의연;이영덕
    • 한국수소및신에너지학회논문집
    • /
    • 제35권2호
    • /
    • pp.121-128
    • /
    • 2024
  • In this study, a dynamic simulation model of a heavy-duty truck, equipped with a fuel cell power-train, has been developed and the dynamic behavior of the fuel cell stack has bee investigated using. Output change simulations were performed according to several drive cycle load change of a fuel cell truck. Mathworks' Simulink and Simscape program were used to develop the model. The model is comprised of fuel cell power train, power converter system and truck vehicle part. The vehicle runs at targeted speed of the truck, which is set as the load of the system. The dynamic behavior of the fuel cell stack according to the weight difference were analyzed, and based on this, the dynamic characteristics of the fuel cell output power and battery state with simple load was analyzed.

주행 중 실내소음과 Wheel의 Lateral Dynamic Stiffness와의 상관관계에 대한 시험적 연구 (The Experimental Study on the Correlation of the Interior Noise of a Driving Vehicle with Lateral Dynamic Stiffness of the Wheel)

  • 김병진;사정환;박진성;박현우;조성근;정헌술
    • 대한기계학회논문집 C: 기술과 교육
    • /
    • 제2권1호
    • /
    • pp.9-13
    • /
    • 2014
  • 현재 소비자들이 자동차를 선택하는 여러 이유 중에서, NVH 성능이 아주 중요한 역할을 하고 있다. 근래 하이브리드 및 전기자동차들은 전통적인 차량의 주요 소음원 이었던 엔진의 소음이 거의 발생되지 않아 자동차 실내의 소음에 대한 관심은 더욱 커지고 있다. 해외 참고문헌에 의하면 자동차 휠의 높은 Lateral Dynamic Stiffness(LDS)가 운전 중 발생되는 Structure Bone Noise(SBN)를 저감시키는 것으로 기술되어 있다. 하지만 유효한 기준 및 시험적 결과가 미비하여, 본 연구에서는 LDS가 서로 다른 휠에 동일 타이어를 부착하여 실내소음을 시험 측정하였다. 그 결과 휠의 LDS에 따라 실내소음이 변화되는 것을 확인하였다. 이는 휠의 최적설계로 실내소음의 저감이 가능할수 있다.

Smoke detection in video sequences based on dynamic texture using volume local binary patterns

  • Lin, Gaohua;Zhang, Yongming;Zhang, Qixing;Jia, Yang;Xu, Gao;Wang, Jinjun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권11호
    • /
    • pp.5522-5536
    • /
    • 2017
  • In this paper, a video based smoke detection method using dynamic texture feature extraction with volume local binary patterns is studied. Block based method was used to distinguish smoke frames in high definition videos obtained by experiments firstly. Then we propose a method that directly extracts dynamic texture features based on irregular motion regions to reduce adverse impacts of block size and motion area ratio threshold. Several general volume local binary patterns were used to extract dynamic texture, including LBPTOP, VLBP, CLBPTOP and CVLBP, to study the effect of the number of sample points, frame interval and modes of the operator on smoke detection. Support vector machine was used as the classifier for dynamic texture features. The results show that dynamic texture is a reliable clue for video based smoke detection. It is generally conducive to reducing the false alarm rate by increasing the dimension of the feature vector. However, it does not always contribute to the improvement of the detection rate. Additionally, it is found that the feature computing time is not directly related to the vector dimension in our experiments, which is important for the realization of real-time detection.

이중효용 흡수식 냉온수기 동특성 모델 개발 및 실험결과 비교 (Development of a Dynamic Model for Double-Effect LiBr-$H_2O$ Absorption Chillers and Comparison with Experimental Data.)

  • 신영기;서정아;조현욱;남상철;정진희
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.109-114
    • /
    • 2008
  • A dynamic model has been developed to simulate dynamic operation of a real double-effect absorption chiller. Dynamic behavior of working fluids in main components was modeled in first-order nonlinear differential equations based on heat and mass balances. Mass transport mechanisms among the main components were modeled by valve throttling, 'U' tube overflow and solution sub-cooling. The nonlinear dynamic equations coupled with the subroutines to calculate thermodynamic properties of working fluids were solved by a numerical method. The dynamic performance of the model was compared with the test data of a commercial medium chiller. The model showed a good agreement with the test data except for the first 5,000 seconds during which different flow rates of the weak solution caused some discrepancy. It was found that the chiller dynamics is governed by the inlet temperatures of the cooling water and the chilled water when the heat input to the chiller is relatively constant.

  • PDF

이중효용 흡수식 냉온수기 동특성 모델 개발 및 실험결과 비교 (Development of a Dynamic Model for Double-Effect LiBr-$H_{2}O$ Absorption Chillers and Comparison with Experimental Data)

  • 신영기;서정아;조현욱;남상철;정진희
    • 설비공학논문집
    • /
    • 제20권12호
    • /
    • pp.781-788
    • /
    • 2008
  • A dynamic model has been developed to simulate dynamic operation of a real double-effect absorption chiller. Dynamic behavior of working fluids in main components was modeled in first-order nonlinear differential equations based on heat and mass balances. Mass transport mechanisms among the main components were modeled by valve throttling, 'U' tube overflow and solution sub-cooling. The nonlinear dynamic equations coupled with the subroutines to calculate thermodynamic properties of working fluids were solved by a numerical method. The dynamic performance of the model was compared with the test data of a commercial medium chiller. The model showed a good agreement with the test data except for the first 5,000 seconds during which different flow rates of the weak solution caused some discrepancy. It was found that the chiller dynamics is governed by the inlet temperatures of the cooling water and the chilled water when the heat input to the chiller is relatively constant.

Effect of soil pile structure interaction on dynamic characteristics of jacket type offshore platforms

  • Asgarian, Behrouz;Shokrgozar, Hamed Rahman;Shahcheraghi, Davoud;Ghasemzadeh, Hasan
    • Coupled systems mechanics
    • /
    • 제1권4호
    • /
    • pp.381-395
    • /
    • 2012
  • Dynamic response of Pile Supported Structures is highly depended on Soil Pile Structure Interaction. In this paper, by comparison of experimental and numerical dynamic responses of a prototype jacket offshore platform for both hinge based and pile supported boundary conditions, effect of soil-pile-structure interaction on dynamic characteristics of this platform is studied. Jacket and deck of a prototype platform is installed on a hinge-based case first and then platform is installed on eight skirt piles embedded on continuum monolayer sand. Dynamic characteristics of platform in term of natural frequencies, mode shapes and modal damping are compared for both cases. Effects of adding and removing vertical bracing members in top bay of jacket on dynamic characteristics of platform for both boundary conditions are also studied. Numerical simulation of responses for the studied platform is also performed for both mentioned cases using capability of ABAQUS and SACS software. The 3D model using ABAQUS software is created using solid elements for soil and beam elements for jacket, deck and pile members. Mohr-Coulomb failure criterion and pile-soil interface element are used for considering nonlinear pile soil structure interaction. Simplified modeling of soil-pile-structure interaction effect is also studied using SACS software. It is observed that dynamic characteristics of the system changes significantly due to soil-pile-structure interaction. Meanwhile, both of complex and simplified (ABAQUS and SACS, respectively) models can predict this effect accurately for such platforms subjected to dynamic loading in small range of deformation.

Dynamic visco-hyperelastic behavior of elastomeric hollow cylinder by developing a constitutive equation

  • Asgari, Masoud;Hashemi, Sanaz S.
    • Structural Engineering and Mechanics
    • /
    • 제59권4호
    • /
    • pp.601-619
    • /
    • 2016
  • In this study, developments of an efficient visco-hyperelastic constitutive equation for describing the time dependent material behavior accurately in dynamic and impact loading and finding related materials constants are considered. Based on proposed constitutive model, behaviour of a hollow cylinder elastomer bushing under different dynamic and impact loading conditions is studied. By implementing the developed visco-hyperelastic constitutive equation to LS-DYNA explicit dynamic finite element software a three dimensional model of the bushing is developed and dynamic behaviour of that in axial and torsional dynamic deformation modes are studied. Dynamic response and induced stress under different impact loadings which is rarely studied in previous researches have been also investigated. Effects of hyperelastic and visco-hyperelastic parameters on deformation and induced stresses as well as strain rate are considered.

Dynamic analysis of trusses including the effect of local modes

  • Levy, Eldad;Eisenberger, Moshe
    • Structural Engineering and Mechanics
    • /
    • 제7권1호
    • /
    • pp.81-94
    • /
    • 1999
  • The dynamic analysis of trusses using the finite element method tends to overlook the effect of local member dynamic behavior on the overall response of the complete structure. This is due to the fact that the lateral inertias of the members are omitted from the global inertia terms in the structure mass matrix. In this paper a condensed dynamic stiffness matrix is formulated and used to calculate the exact dynamic properties of trusses without the need to increase the model size. In the examples the limitations of current solutions are presented together with the exact results obtained from the proposed method.