• Title/Summary/Keyword: dynamic surface tension

Search Result 89, Processing Time 0.071 seconds

Studies on the Dynamic Surface Tension of GL12 and Anionic Mixtures (N-Dodecanoyl, N-Methyl Glucamine(GL 12)과 음이온 계면활성제 혼합물의 Dynamic Surface Tension에 관한 연구)

  • Ahn, Ho-Jeong;Choi, Kyu-Suk
    • Applied Chemistry for Engineering
    • /
    • v.7 no.1
    • /
    • pp.101-108
    • /
    • 1996
  • The dynamic surface tension of GL12 (easily biodegradable nonionic surfactant and mild to skin), LAS and SLES aqueous solutions and that of mixed surfactant systems were measured by the maximum bubble pressure method at different mixing ratios. The effects of various salt such as NaCl, CsCl and urea on the dynamic surface tension of mixed surfactant systems were also studied. The dynamic surface tension of GL12 was not influenced by the presence of salts. On the contrary, the dynamic surface tensions of anionic surfactants (LAS and SLES) were significantly affected by the salts. In the mixed surfactant systems, the effect of salt increased as the composition of anionic LAS or SLES increased in the GL12/LAS and GL12/SLES mixtures.

  • PDF

Shape Finding and Stress Finding for Pneumatic Membrane Structures by Dynamic Relaxation Method (동적이완법에 의한 공기막구조물의 형태탐색과 응력해석)

  • 문창훈;이경수;배종효;최옥훈;한상을
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.268-275
    • /
    • 1999
  • The purpose of this study is to propose the method of determining the initial pneumatic membrane structures surface and stresses and displacements. Tension structure such as pneumatic membrane structures is stabilized by their initial prestress and air pressure. The process to find initial structural overall shape of tension structures produced by initial prestress called shape finding. One of the most important factor for the design of membrane structures is to search initial smooth surface, because unlike steel or concrete building elements which resist loads in bending, all tension structure forces are carried within the surface by membrane stress. The result for initial surface of pneumatic membrane element and maximum displacement in large deformation in analysis is compared with well-known nonlinear numerical method such as Newton-raphson method and dynamic relaxation method

  • PDF

SINGLE-PHASE MULTI-COMPONENT SIMULATION OF STATIC SHAPE AND DYNAMIC DEFORMATION OF RED BLOOD CELLS USING LATTICE BOLTZMANN METHOD (Lattice Boltzmann Method을 이용한 적혈구의 정적인 모양과 동적변형에 대한 연구)

  • Farhat, Hassan;Kim, Y.H.;Lee, J.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.186-196
    • /
    • 2008
  • The dependence of the rheological properties of blood on shape, aggregation, and deformability of red blood cells (RBCs) has been investigated using hybrid systems by coupling fluid with solid models. We present a simple approach for simulating blood as a multi-component fluid, in which RBCs are modeled as droplets of acquired biconcave shape. We used lattice Boltzmann method (LBM) due to its excellent numerical stability as a simulation tool. The model enables us to control the droplet static shape by imposing non-isotropic surface tension force on the interface between the two components. The use of the proposed non-isotropic surface tension method is justified by the Norris hypothesis. This hypothesis states that the shape of the RBC is due to a non-uniform interfacial surface tension force acting on the RBC periphery. This force is caused by the unbalanced distribution of the lipid molecules on the surface of the RBC. We also used the same concept to investigate the dynamic shape change of the RBC while flowing through the microvasculature, and to explore the physics of the Fahraeus, and the Fahraeus-Lindqvist effects.

  • PDF

SINGLE-PHASE MULTI-COMPONENT SIMULATION OF STATIC SHAPE AND DYNAMIC DEFORMATION OF RED BLOOD CELLS USING LATTICE BOLTZMANN METHOD (Lattice Boltzmann Method을 이용한 적혈구의 정적인 모양과 동적변형에 대한 연구)

  • Farhat, Hassan;Kim, Y.H.;Lee, J.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.186-196
    • /
    • 2008
  • The dependence of the rheological properties of blood on shape, aggregation, and deformability of red blood cells (RBCs) has been investigated using hybrid systems by coupling fluid with solid models. We present a simple approach for simulating blood as a multi-component fluid, in which RBCs are modeled as droplets of acquired biconcave shape. We used lattice Boltzmann method (LBM) due to its excellent numerical stability as a simulation tool. The model enables us to control the droplet static shape by imposing non-isotropic surface tension force on the interface between the two components. The use of the proposed non-isotropic surface tension method is justified by the Norris hypothesis. This hypothesis states that the shape of the RBC is due to a non-uniform interfacial surface tension force acting on the RBC periphery. This force is caused by the unbalanced distribution of the lipid molecules on the surface of the RBC. We also used the same concept to investigate the dynamic shape change of the RBC while flowing through the microvasculature, and to explore the physics of the Fahraeus, and the Fahraeus-Lindqvist effects.

  • PDF

Effect of surfactant addition on curtain coating color properties and curtain stability (계면활성제 첨가가 커튼 코팅용 도공액의 물성과 커튼 안정성에 미치는 영향)

  • Oh, Kyu-Deok;Kim, Chae-Hoon;Youn, Hye-Jung;Lee, Hak-Lae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.5
    • /
    • pp.49-54
    • /
    • 2011
  • Curtain coating has been considered as the best coating technology because it is a coating technology that forms contour coating layer with better coverage. To increase the curtain stability surfactants are being used. In this study, the effect of a surfactant on the stability of curtain coating colors was examined by evaluating dynamic surface tension with a bubble surface tensiometer. Di-2-ethylhexyl sodium sulfosuccinate was used as a surfactant since it showed low dynamic surface tension at low surface age. And we evaluated the influence of surfactant on coating color properties including surface tension, viscosity and curtain stability. The surface tension of coating color was decreased when surfactant addition was increased up to 0.5 pph, but it was leveled off at 0.3 pph of surfactant addition. With the increase of surfactant addition rate, viscosity of coating color were increased. Micelles formed by surfactant contributed to the increase of the viscosity. Curtain stability was improved with the addition of surfactant until it reached up to 0.5 pph. Excessive addition of surfactant (> 0.5 pph) didn't improve curtain stability. This was attributed to Marangoni effect(self-healing) and decreasing of curtain thickness.

Dynamic Response Characteristics of Tension Leg Platforms in Waves (인장계류식 해양구조물의 동적응답 특성)

  • Lee, C.H.;Son, Y.K.
    • Journal of Power System Engineering
    • /
    • v.2 no.2
    • /
    • pp.81-86
    • /
    • 1998
  • The dynamic response characteristics of Tension Leg Platforms(TLPs) in waves are examined for presenting the basic data for design of TLPs. The numerical approach is based on a combination of the three dimensional source distribution method and the dynamic response analysis method, in which the superstructure of TLP is assumed to be flexible instead of rigid. Restoring forces by hydrostatic pressure on the submerged surface of a TLP have been accurately calculated by excluding the assumption of the slender body theory. The hydrodynamic interactions among TLP members, such as columns and pontoons, and the structural damping are included in the motion and structural analysis. Numerical results are compared with the experimental ones, which are obtained in the literature, concerning the motion and tension responses of a TLP in waves. The results of comparison confirmed the validity of the proposed approach.

  • PDF

A Study on the Shape Finding and Patterning Procedures for Membrane Structures (막구조의 초기형상 및 재단도 결정알고리즘에 관한 연구)

  • 한상을;이경수;이상주;유용주
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.298-305
    • /
    • 1998
  • The purpose of this study is to propose the method of determining the initial fabric membrane structures surface and membrane patterning procedures. Tension structure, such as, fabric membrane structures and cable-net, is stabilized by their initial prestress and boundary condition. The process to find initial structural overall shape of tension structures produced by initial prestress called Shape Finding or Shape Analysis. One of the most important factor for the design of membrane structures is to search initial smooth surface, because unlike steel or concrete building elements which resist loads in bending, all tension structure forces are carried within the surface by membrane stress or cable tension. To obtain initial surface of fabric membrane element in large deformation analysis, the membrane element is idealized as cable using a technique with Force-density method. and that result is compared with well-known nonlinear numerical method, such as Newton-raphson method and Dynamic relaxation method. The shape resulting from Force-density method has been dealt with as the initial membrane shape and used patterning procedures.

  • PDF

Experimental consideration for contact angle and force acting on bubble under nucleate pool boiling

  • Ji-Hwan Park;Il Seouk Park;Daeseong Jo
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1269-1279
    • /
    • 2023
  • Pool boiling experiments are performed within an isolated bubble regime at inclination angles of 0° and 45°. When a bubble grows and departs from the heating surface, the pressure, buoyancy, and surface tension force play important roles. The curvature and base diameter are required to calculate the pressure force, the bubble volume is required to calculate the buoyancy force, and the contact angle and base diameter are required to calculate the surface tension force. The contact angle, base diameter, and volume of the bubbles are evaluated using images captured via a high-speed camera. The surface tension force equation proposed by Fritz is modified with the contact angles obtained in this study. When the bubble grows, the contact angle decreases slowly. However, when the bubble departs, the contact angle rapidly increases owing to necking. At an inclination angle of 0°, the contact angle is calculated as 82.88° at departure. Additionally, the advancing and receding contact angles are calculated as 70.25° and 82.28° at departure, respectively, at an inclination angle of 45°. The dynamic behaviors of bubble growth and departure are discussed with forces by pressure, buoyancy, and surface tension.

Hydrophobisity Recovery of PDMS Blended with Fluorinated Silicone Rubber Using Dynamic Contact Angle Measurement (동적 접촉각 측정을 이용한 실리콘고무 블렌드의 발수성회복 검토)

  • Lee, C.R.;Ryu, S.S.;Homma, H.;Izumi, K.
    • Proceedings of the KIEE Conference
    • /
    • 2001.11a
    • /
    • pp.6-8
    • /
    • 2001
  • This report describes the effect of the blending of poly(trifluoropropylmethylvinylsiloxane) (PTFPMVS) with poly(dimethylsiloxane) (PDMS) on the surface properties such as water repellency using dynamic contact angle (DCA) measurement. We have investigated the surface molecular mobility of the PDMS/PTFPMVS blends via a DCA measurement and an adhesion tension relaxation. It could be shown that a flexible side-chain segment in PTFPMVS having higher surface energy, could be reoriented easily in water to decrease the interfacial tension of the polymer/water interface, which seems to play a major role at the decrease of the receding contact angle and the surface resistivity of PDMS/PTFPMVS blends.

  • PDF

A Molecular Dynamics Study of Thermophysical Properties and Stability of Nanoscale Liquid Thread (분자동역학 해석을 이용한 액체 극미세사의 열역학적 물성과 안정성 연구)

  • Kim, Byeong-Geun;Choi, Young-Ki;Kwon, Oh-Myoung;Park, Seung-Ho;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1366-1371
    • /
    • 2003
  • Molecular dynamics (MD) simulations are conducted to investigate the thermophysical characteristics and the stability of liquid threads for various conditions. A cylindrical thread in the simulation domain is made of Lennard-Jones molecules. The surface tension of liquid threads can be determined from local densities, local normal and transverse components of the pressure force. In order to understand the effects of thread radii on surface tensions, the Tolman equation is modified on the basis of the cylindrical coordinates for prediction of surface tensions. Surface tensions calculated from the MD simulation agree with the prediction from the modified Tolman equation. In addition, surface tensions decrease linearly with increasing system temperature. For a binary system, the surface tension decreased linearly compared to that for a pure system with increasing binary ratio of solute molecules which have relatively large value of the affinity coefficient. For a fixed binary ratio, the surface tension increased slightly with the affinity coefficient and the maximum value appear around where the affinity coefficient is 1.5 and decreased rapidly for upper value of 1.5. In addition, the critical wavelengths of perturbations are proven to be directly proportional to the equimolar dividing radii of the liquid threads.

  • PDF