• Title/Summary/Keyword: dynamic stress analysis

Search Result 1,088, Processing Time 0.032 seconds

Analysis of Seismic Performance of Modular Containment Structure for Small Modular Reactor (소형 원자로용 모듈화 격납구조의 내진성능 분석)

  • Park, Woo-Ryong;Yhim, Sung-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.409-416
    • /
    • 2020
  • The seismic performance of a containment structure should be secured to maintain the structural soundness of a containment structure under various earthquakes that occur globally. Therefore, an analysis of the seismic performance of a modular containment structure for a small modular reactor is also required. To analyze the seismic performance of modular containment, FEM models with contact surfaces between the modules and tendon were prepared and the modal and seismic analyses were performed. The displacement, stress, and gap size of modular containment under earthquake wave were analyzed. The effects of the tendon force, friction coefficient, and earthquake wave on the seismic performance were analyzed. The seismic performance of monolithic containment was also analyzed for comparison. In the 1st and 2nd natural modes, which most likely affect, the modular containment showed horizontal dynamic behavior, which is similar to monolithic containment, because of the combined effects of the tendon force and friction force between modules. When the combined effect is sufficient, the seismic performance of the modular containment is secured over a certain level. An additional increase in seismic performance is expected when some material with a larger friction coefficient is adopted on the contact surface.

Neogene Uplift in the Korean Peninsula Linked to Small-scaled Mantle Convection at Singking Slab Edge (소규모 맨틀 대류에 의한 한반도의 신제3기 이후 융기 운동)

  • Shin, Jae-Ryul;Sandiford, Mike
    • Journal of the Korean Geographical Society
    • /
    • v.47 no.3
    • /
    • pp.328-346
    • /
    • 2012
  • This study provides quantitative constraints on Neogene uplift in the Korean peninsula using onshore paleo-shoreline records and seismic data. The eastern margin of Northeast Asia including Korea sits in the back-arc system behind the Western Pacific Subduction Zone, a complex trench triple junction of the Philippine Sea, Pacific, and Eurasian (Amurian) plates. An analysis of seismic data in the subduction zone shows that the pattern of uplift in the peninsula mirrors the extent of deep seismicity in subducting Pacific plate beneath. Combined with previous tomographic studies it is proposed that uplift is partly driven by asthenospheric upwelling caused by a sinking slab during the Neogene. In addition, the SHmax orientations of E-W and N-S trends in the peninsula are consistent with the prevailing in-situ stress fields in the eastern Eurasian continent generated by various plate boundary forces. The uplift in Korea during the Late Neogene is attributed, in part, to lithospheric failure relating to faulting movements, thus providing a link between dynamic effects of mantle upwelling at sinking slab edge and lithospheric responses driven by plate boundary forces.

  • PDF

Regular Waves-induced Seabed Dynamic Responses around Submerged Breakwater (규칙파동장하 잠제 주변지반의 동적거동에 관한 수치해석)

  • Lee, Kwang-Ho;Ryu, Heung-Won;Kim, Dong-Wook;Kim, Do-Sam;Kim, Tae-Hyung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.3
    • /
    • pp.132-145
    • /
    • 2016
  • In case of the seabed around and under gravity structures such as submerged breakwater is exposed to a large wave action long period, the excess pore pressure will be generated significantly due to pore volume change associated with rearrangement soil grains. This effect will lead a seabed liquefaction around and under structures as a result from decrease in the effective stress. Under the seabed liquefaction occurred and developed, the possibility of structure failure will be increased eventually. In this study, to evaluate the liquefaction potential on the seabed quantitatively, numerical analysis was conducted using the expanded 2-dimensional numerical wave tank model and the finite element elasto-plastic model. Under the condition of the regular wave field, the time and spatial series of the deformation of submerged breakwater, the pore water pressure (oscillatory and residual components) and pore water pressure ratio in the seabed were estimated.

An Experimental Study on the Mechanical and Durability Properties of Ductile Cement Panel Used Vacuum Extrusion Molding (진공압출성형 고인성 시멘트 패널의 역학 및 내구특성에 관한 실험적 연구)

  • Rho, Hyoung-Nam;Lee, Jong-Suk;Han, Byung-Chan;Kwon, Young-Jin;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.473-476
    • /
    • 2008
  • Due to the pursuit of high function and international price increase in the field of construction, the application of the secondary product using cement is on the increase gradually in the construction industry in the pursuit of economic cost reduction by the shortening of the construction time like Expediting and the dry construction method at the same time. However, it is in very urgent situation of measures to improve the structural performance or durable performance because it is limited for use in terms of panel in interior exterior building or functional repair reinforce as yet. Accordingly, this study is to investigate applicability of permanent Formwork like mould with the structural performance or excellent durable performance in the field of construction, and to derive optimum mixture in the performance and quality of manufacture. As a result of analysis comparison with the dynamic and durable properties of vacuum extrusion molding high toughness cement panel according to the mixture of four conditions, this study has found that the test body of mixing ECC-DP3 using small filler and large granulated blast furnace slag and powder flame retardant had excellent relative hardness and bending stress strain. The durable performance has shown excellent tendency by the decrease of porosity and enhancement of water-tightness.

  • PDF

Evaluation of Nonlinear Deformational Characteristics of Soils from Laboratory and Field Tests (실내시험 및 현장시험을 통한 지반의 비선형 변형특성 평가)

  • 김동수;권기철
    • Geotechnical Engineering
    • /
    • v.13 no.5
    • /
    • pp.89-100
    • /
    • 1997
  • It is very improtant to evaluate the reliable nonlinear deformational characteristics of soils not only in the analysis of geotechnical structures under working stress conditions but also for the soil dynamic problems. Field testings such as crosshole and pressuremeter tests can be used to determine the modulus of soils under in-situ conditions, but it is not possible to determine the modulus over the entire strain amplitude range. Laboratory methods such as resonant column 1 torsional shear test can be used to determine the modulus over the whole strain amplitude range, but it is very difficult to obtain the representative undisturbed samples on the sixte. For the reliable evaluation of nonlinear deformation characteristics of soils on a typical site, small strain modulus obtained from field testy and nomalized modulus reduction curve determined by laboratory bests need to be combined. In this paper, laboratory and Held testy were performed at a sixte which consisted of granite wearthered residual boils to evaluate the nonlinear deformational characteristics of coils such as the effects of strain amplitude, loading frequency, confining pressure and sample disturbance. It has been shorn that when the effects of these factors are properly taken into account, the stiffness values evaluated by various field and labrotary tests are comparable to each other fairly well. Finally, the procedure to evaluate the nonlinear deformstional characteristics of the sixte was proposed.

  • PDF

Laboratory Validation of Bridge Finite Model Updating Approach By Static Load Input/Deflection Output Measurements (정적하중입력/변위출력관계를 이용한 단경간 교량의 유한요소모델개선기법: 실내실험검증)

  • Kim, Sehoon;Koo, Ki Young;Lee, Jong-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.3
    • /
    • pp.10-17
    • /
    • 2016
  • This paper presents a laboratory validation of a new approach for Finite Element Model Updating(FEMU) on short-span bridges by combining ambient vibration measurements with static load input-deflection output measurements. The conventional FEMU approach based on modal parameters requires the assumption on the system mass matrix for the eigen-value analysis. The proposed approach doesn't require the assumption and even provides a way to update the mass matrix. The proposed approach consists of two steps: 1) updating the stiffness matrix using the static input-deflection output measurements, and 2) updating the mass matrix using a few lower natural frequencies. For a validation of the proposed approach, Young's modulus of the laboratory model was updated by the proposed approach and compared with the value obtained from strain-stress tests in a Universal Testing Machine. Result of the conventional FEMU was also compared with the result of the proposed approach. It was found that proposed approach successfully estimated the Young's modulus and the mass density reasonably while the conventional FEMU showed a large error when used with higher-modes. In addition, the FE modeling error was discussed.

Structural Capacity of High Strength Steel Pipe Pile After Pile Driving (고강도 강관말뚝의 항타후 구조성능 분석)

  • La, SeungMin;Yoo, Hankyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6C
    • /
    • pp.251-258
    • /
    • 2011
  • Steel pipe piles have been used as various deep foundation materials for a long time. Recent increase in steel material cost has made engineers reluctant in using it even with its good quality and ease of construction. Therefore when constructing with steel pipe pile, the decision to reuse the excessive pile length that is cut off from the designed pile head elevation after pile driving can be cost saving. This has caused many constructors to reuse the pile leftovers with new piles, but the absence of quantitative structural capacity behaviors of steel pipe pile after pile driving or appropriate countermeasures and standards in reusing steel pipe pile has resulted in wrong applications, pile structural integrity problems, inappropriate limitation of reusable pile length, etc. The structural performance analysis between a new pile and a pile that has undergone working state and ultimate state stress level during pile driving was performed in this research by means of comparing the results between the dynamic pile load test, tensile load test, charpy energy test and fatigue test for high strength steel of $440N/mm^2$ yield strength. Test results show that under working load conditions the yield strength variation is less than 2% and for ultimate load conditions the variation is less than 5% for maximum total blow count of 3000. The results have been statistically analyzed to check the sensitivity of each factors involved. From the test results, reusability of steel pipe pile lies not in the main pipe yield strength deviation but in the reduction of absorb energy, strength changes and quality control at the welded section, shape deformation and local buckling during pile driving.

Numerical analysis of the morphological changes by sediment supply at the downstream channel of Youngju dam (댐 하류하천에서 유사공급에 의한 하도의 지형변화 수치모의 분석(영주댐을 중심으로))

  • Kang, Ki-Ho;Jang, Chnag-Lae;Lee, Gi Ha;Jung, Kwansue
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.8
    • /
    • pp.693-705
    • /
    • 2016
  • In this study, the effects of sediment supply on the downstream of a large dam are investigated using a numerical model. The model simulation shows a good agreement with laboratory experiment results of sediment transport and diffusion from sediment pulses. The water surface changes from the various sediment bed elevations are also simulated using the model. The site which has a relatively stiff bed slope and meandering of a channel is selected as an appropriate location for sediment supply because of its shear stress enough to supply the sediment downstream. The model simulation shows the decrease of channel bed elevation through the simulation period with time. The well-deposition of sediment supplied from the downstream of dam is found in the location where the flow rate is relatively low. A bed relief index is increased with time and it is relatively greater in downstream compared to upstream. The channel bed variability increases as flow rate increases with a greater bed relief index. The results of this study demonstrate the importance of increasing water discharge of a large dam to increase the dynamic of channel bed and thus to enhance the efficiency of channel bed restoration by sediment supply.

Numerical Analysis on Liquefaction Countermeasure of Seabed under Submerged Breakwater using Concrete Mat Cover (for Regular Waves) (콘크리트매트 피복을 이용한 잠제하 해저지반에서의 액상화 대책공법에 관한 수치해석(규칙파 조건))

  • Lee, Kwang-Ho;Ryu, Heung-Won;Kim, Dong-Wook;Kim, Do-Sam;Kim, Tae-Hyung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.6
    • /
    • pp.361-374
    • /
    • 2016
  • When the seabed around and under gravity structures such as submerged breakwater is exposed to a large wave action long period, the excess pore pressure is generated significantly due to pore volume change associated with rearrangement soil grains. This effect leads a seabed liquefaction around and under structures as a result from decrease in the effective stress, and the possibility of structure failure is increased eventually. These facts shown above have been investigated in the previous studies related to regular and irregular waves. This study suggested a concrete mat for preventing the seabed liquefaction near the submerged breakwater. The concrete mat was mainly used as a countermeasure for scouring protection in riverbed. According to installation of the concrete mattress, the time and spatial series of the deformation of submerged breakwater, the pore water pressure, and the pore water pressure ratio in the seabed were investigated. Their results were also compared with those of the seabed unprotected with the concrete mat. The results presented were confirmed that the liquefaction potential of seabed under the concrete mattress is significantly reduced under regular wave field.

CHARACTERIZATION OF GEOTECHNICAL SITES BY MULTI-CHANNEL ANALSIS OF SURFACE WAVES(MCASW) (지표층의 탄성계수 측정을 위한 새로운 탄성파 방법)

  • 박춘병
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1995.10a
    • /
    • pp.15.2-22
    • /
    • 1995
  • Evaluating stiffness of near-surface materials has been one of the critically important tasks in many civil engineering works. It is the main goal of geotechnical characterization. The so-called deflection-response method evaluates the stiffness by measuring stress-strain behavior of the materials caused by static or dynamic load. This method, however, evaluates the overall stiffness and the stiffness variation with depth cannot be obtained. Furthermore, evaluation of a large-area geotechnical site by this method can be time-consuming, expensive, and damaging to many surface points of the site. Wave-propagation method, on the other hand, measures seismic velocities at different depths and stiffness profile (stiffness change with depth) can be obtained from the measured velocity data. The stiffness profile is often expressed by shear-wave (S-wave) velocity change with depth because S-wave velocity is proportional to the shear modulus. that is a direct indicator of stiffiiess. The crosshole and downhole method measures the seismic velocity by placing sources and receivers (geophones) at different depths in a borehole. Requirement of borehole installation makes this method also time-consuming, expensive, and damaging to the sites. Spectral-Analysis-of-Surface-Waves (SASW) method places both source and receivers at the surface, and records horizontally-propagating surface waves. Based upon the theory of surfacewave dispersion, the seismic velocities at different depths are calculated by analyzing the recorded surface-wave data. This method can be nondestructive to the sites. However, because only two receivers are used, the method requires multiple measurements with different field setups and, therefore, the method often becomes time-consuming and labor-intensive. Furthermore. the inclusion of noise wavefields cannot be handled properly, and this may cause the results by this method inaccurate. When multi-channel recording method is employed during the measurement of surface-waves, there are several benefits. First, usually single measurement is enough because multiple number (twelve or more) of receivers are used. Second, noise inclusion can be detected by coherency checking on the multi-channel data and handled properly so that it does not decrease the accuracy of the result. Third, various kinds of multi-channel processing techniques can be applied to f1lter unwanted noise wavefields and also to analyze the surface-wavefields more accurately and efficiently. In this way, the accuracy of the result by the method can be significantly improved. Fourth, the entire system of source, receivers, and recording-processing device can be tied into one unit, and the unit can be pulled by a small vehicle, making the survey speed very fast. In all these senses, multi-channel recording of surface waves is best suited for a routine method for geotechnical characterization in most of civil engineering works.

  • PDF