• Title/Summary/Keyword: dynamic strain

Search Result 1,432, Processing Time 0.032 seconds

High Strain Rate Compression Behavior of EPP Bumper Foams (변형률 속도에 따른 EPP Foam의 대변형 동적 압축 특성에 관한 연구)

  • Choi, Ki-Sang;Kang, Woo-Jong;Kim, Gi-Hoon;Kim, Seong-Kun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.4
    • /
    • pp.118-125
    • /
    • 2009
  • Bumper is designed to protect the automotive frame without damage at low velocity. Expanded polypropylene (EPP) foam is used in the bumper as an energy absorbing material. In order to exactly predict the energy absorbing performance of the foam material under impact loading condition, it is important to use high strain rate material properties. In this study, a new apparatus for dynamic compression tests was developed to investigate the high strain rate behavior of EPP foams. Three kinds of EPP foams which have different expansion ratios were tested to investigate the quasi-static and dynamic compression behavior. Quasi-static compressions were performed at low strain rates of 0.001/s, 0.1/s and 1/s. The dynamic compressions were carried out at high strain rates of 50/s and 100/s with the developed apparatus. It was observed that the EPP foam has significant strain rate effect as compared to quasi-static behavior.

Estimation of Displacement Responses from the Measured Dynamic Strain Signals Using Mode Decomposition Technique (모드분해기법을 이용한 동적 변형률신호로부터 변위응답추정)

  • Kim, Sung-Wan;Chang, Sung-Jin;Kim, Nam-Sik
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.109-117
    • /
    • 2008
  • In this study, a method predicting the displacement responseof structures from the measured dynamic strain signal is proposed by using a mode decomposition technique. Dynamic loadings including wind and seismic loadings could be exerted to the bridge. In order to examine the bridge stability against these dynamic loadings, the prediction of displacement response is very important to evaluate bridge stability. Because it may be not easy for the displacement response to be acquired directly on site, an indirect method to predict the displacement response is needed. Thus, as an alternative for predicting the displacement response indirectly, the conversion of the measured strain signal into the displacement response is suggested, while the measured strain signal can be obtained using fiber optic Bragg-grating (FBG) sensors. To overcome such a problem, a mode decomposition technique was used in this study. The measured strain signal is decomposed into each modal component by using the empirical mode decomposition(EMD) as one of mode decomposition techniques. Then, the decomposed strain signals on each modal component are transformed into the modal displacement components. And the corresponding mode shapes can be also estimated by using the proper orthogonal decomposition(POD) from the measured strain signal. Thus, total displacement response could be predicted from combining the modal displacement components.

  • PDF

Experimental Characterization of Dynamic Tensile Strength in Unidirectional Carbon/Epoxy Composites

  • Taniguchi, Norihiko;Nishiwaki, Tsuyoshi;Kawada, Hiroyuki
    • Advanced Composite Materials
    • /
    • v.17 no.2
    • /
    • pp.139-156
    • /
    • 2008
  • This study aims to characterize the dynamic tensile strength of unidirectional carbon/epoxy composites. Two different carbon/epoxy composite systems, the unidirectional T700S/2500 and TR50S/modified epoxy, are tested at the static condition and the strain rate of $100\;s^{-1}$. A high-strain-rate test was performed using a tension-type split Hopkinson bar technique with a specific fixture for specimen. The experimental results demonstrated that both tensile strength increase with strain rate, while the fracture behaviors are quite different. By the use of the rosette analysis and the strain transformation equations, the strain rate effects of material principal directions on tensile strength are investigated. It is experimentally found that the shear strain rate produces the more significant contribution to strain rate effect on dynamic tensile strength. An empirical failure criterion for characterizing the dynamic tensile strength was proposed based on the Hash-in's failure criterion. Although the proposed criterion is just the empirical formula, it is in better agreement with the experimental data and quite simple.

Dynamic mechanical analysis of silicone rubber reinforced with multi-walled carbon nanotubes

  • Li, Rui;Sun, L.Z.
    • Interaction and multiscale mechanics
    • /
    • v.4 no.3
    • /
    • pp.239-245
    • /
    • 2011
  • The dynamic mechanical behavior of silicone rubber reinforced with multi-walled carbon nanotubes (MWCNTs) has been investigated in this study. The MWCNT-reinforced nanocomposites are tested in compression mode through dynamic mechanical analysis (DMA). Multiple effects including MWCNT loading, testing frequency, dynamic strain amplitude, and pre-strain level are taken into consideration. Results show that, by adding 5 wt% of MWCNTs, the dynamic stiffness and damping coefficient of the silicone rubber are significantly enhanced. It is further observed that the dynamic mechanical properties of the nanocomposites are sensitive to dynamic strain amplitude but only slightly affected by pre-strains.

Identification Method of the Dynamic Characteristics of Pre-deformed Elastomers (초기 변형이 있는 방진고무의 동특성 규명 방법)

  • Ahn, Tae-Kil;Kim, Kug-Weon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.12
    • /
    • pp.918-922
    • /
    • 2003
  • Elastomers are extensively used in various machine design application, mainly for vibration/shock/noise control devices. However. there are still a lot of difficulties in designing the elastomeric components applied in complex shapes and under pre-deformed states. One of the most Influential factors related to mechanical properties of elastomers are pre- and dynamic strains. Consequently, a large number of experiments have to be conducted to identify dynamic properties of elastomers considering their combined effects. In this paper, we present an efficient experimental method to identify mechanical properties of elastomers considering effects of pre- and dynamic strains. This method is capable of predicting the dynamic characteristics of elastomers under arbitrary strain states from reduced experimental data.

Estimation of Strain at Elastic System Using Acceleration Response (가속도 데이터를 활용한 선형 시스템의 변형률 예측)

  • Kim, Chan-Jung;Lee, Bong-Hyun;Jeon, Hyun-Cheol;Jo, Hyeon-Ho;Kang, Yeon-June
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.1
    • /
    • pp.9-14
    • /
    • 2012
  • This paper investigates the prediction of the dynamic strain response using acceleration response only. Two methods are proposed for the strain prediction; one is based on beam theory and the other is calculated by the frequency response function between acceleration and strain. First, it is estimated the dynamics of the simple notched beam, including the non-linearity, through the uni-axial vibration testing. Then, the dynamic strain response is predicted under two different methods using acceleration response. The validation of proposed methods is conducted by the comparison between measured strain and predicted values. The comparison reveals that the proposed method based on the FRF between acceleration and strain is more reliable one than that stemmed from beam theory and the maximum relative error is less than 8 %.

Dynamic Compressive Deformation Characteristics of Free-Cutting Brass And Yellow Brass at High Strain Rates (고변형률 압축 하중에서 쾌삭 황동과 황동의 동적 변형 거동 특성)

  • Lee, Ouk-Sub;Kim, Kyoung-Joon;Lee, Jong-Won
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.107-112
    • /
    • 2003
  • Mechanical properties of the materials used for transportations and industrial machinery under high strain rate loading conditions such as high impact loading are required to provide appropriate safety assessment to varying dynamically loaded mechanical structures. The Split Hopkinson Pressure Bar(SHPB) technique with a special experimental apparatus can be used to obtain the material behavior under high strain rate loading conditions. In this paper, the dynamic deformation behavior of a brass under both high strain rate compressive loading conditions has been determined using the SHPB technique.

  • PDF

Assessment of Grain Size Distribution in a Hammer-Forged Alloy 718 Disk (해머 단조된 Alloy 718 디스크의 결정립 분포 해석)

  • 염종택;박노광
    • Transactions of Materials Processing
    • /
    • v.6 no.3
    • /
    • pp.250-256
    • /
    • 1997
  • Hammer forging was employed for Alloy 718 disk. The change in grain size during hot forging depends very much on dynamic recrystallization. The final grain size depends especially on the critical strain$($\varepsilon$_C)$/TEX> for dynamic recrystallization and Zener-Holloman parameter(Z). In this study, the critical strain$($\varepsilon$_C)$, the strain for 50 pct. recrystallization$($\varepsilon$_{0.5})$ and fraction of dynamic recrystallization(Xdyn) were measured by compression tests. FE simulation was also carried out ot predict the evolution of microstructure. The strain, strain rate and temperature distribution predicted by forging simulation can be effectively used to predict the distribution of grain sizes in the forged workpiece. The present model predictions showed an excellent agreement with the microstructural evolution of hammer-forged Alloy 718 disks.

  • PDF

Dynamic deformation behavior of aluminum alloys under high strain rate compressive/tensile loading (상용 알루미늄 합금의 고속 인장/압축 변형거동 규명)

  • Lee, O.S.;Kim, G.H.;Kim, M.S.;Hwang, S.W.
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.268-273
    • /
    • 2000
  • Mechanical properties of the materials used for transportations and industrial machinery under high strain rate loading conditions are required to provide appropriate safety assessment to these mechanical structures. The Split Hopkinson Pressure Bar(SHPB) technique, a special experimental apparatus, can be used to obtain the material behavior under high strain rate loading condition. In this paper, dynamic deformation behaviors of the aluminum alloys, Al2024-T4, Al6061-T6 and Al7075-T6, under high strain rate compressive and tensile loading are determined using SHPB technique.

  • PDF

Dynamic Compressive Deformation Characteristics of Brass at High Strain Rates (고변형률 압축 하중에서 활동(KS D 5101 C3605BD-F)의 동적 변형 거동 특성)

  • 이억섭;나경찬;김경준
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.12
    • /
    • pp.142-147
    • /
    • 2003
  • Mechanical properties of the materials used for transportations and industrial machinery under high strain rate loading conditions such as high impact loading are required to provide appropriate safety assessment to varying dynamically leaded mechanical structures. The Split Hopkinson Pressure Bar(SHPB) technique with a special experimental apparatus can be used to obtain the material behavior under high strain rate ]ending conditions. In this paper, the dynamic deformation behavior of a brass under both high strain rate compressive loading conditions has been determined using the SHPB technique.