• Title/Summary/Keyword: dynamic source routing

Search Result 92, Processing Time 0.033 seconds

Energy-Aware Routing Algorithm using Backup Route for Ad hoc Network (애드혹 네트워크에서의 보조 경로를 이용한 에너지 인식 라우팅 알고리즘)

  • Jung Se-Won;Lee Chae-Woo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.6 s.336
    • /
    • pp.23-32
    • /
    • 2005
  • This paper proposes a new algorithm for the energy constraint ad-hoc network which efficiently spread the energy usage over the network through the backup route scheme in order to increase the network lifetime. Recently, the various energy-efficient routing algorithms based on On-demanding method are proposed. Among them, PSR(Power-aware Source Routing) increased the network lifetime through the periodical route alternation depended on the use of the battery while DSR(Dynamice Source Routing) uses only the route selected during the route discovery phase. But PSR has a problem that it increases the route overhead because of the frequent flooding for the route alternation. For solving this problem, we propose HPSR(Hierarchical Power-aware Source Routing) which uses the backup route set during the route discovery in order to alternation the route without the flooding. HPSR increases the network lifetime due to the frequent route alternation using backup route while it decreases the routing overhead due to the reduced flooding. In this paper, we also prove the performance of HPSR through the simulation using OPNET.

Scalable Cluster Overlay Source Routing Protocol (확장성을 갖는 클러스터 기반의 라우팅 프로토콜)

  • Jang, Kwang-Soo;Yang, Hyo-Sik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.3
    • /
    • pp.83-89
    • /
    • 2010
  • Scalable routing is one of the key challenges in designing and operating large scale MANETs. Performance of routing protocols proposed so far is only guaranteed under various limitation, i.e., dependent of the number of nodes in the network or needs the location information of destination node. Due to the dependency to the number of nodes in the network, as the number of nodes increases the performance of previous routing protocols degrade dramatically. We propose Cluster Overlay Dynamic Source Routing (CODSR) protocol. We conduct performance analysis by means of computer simulation under various conditions - diameter scaling and density scaling. Developed algorithm outperforms the DSR algorithm, e.g., more than 90% improvement as for the normalized routing load. Operation of CODSR is very simple and we show that the message and time complexity of CODSR is independent of the number of nodes in the network which makes CODSR highly scalable.

On Improving DSR routing protocol

  • Ha, Eun-Yong;Piao, Dong-Huan
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.05a
    • /
    • pp.1609-1612
    • /
    • 2004
  • Ad hoc network is a kind of new wireless network paradigm for mobile hosts. Ad Hoc wireless networks consist of wireless mobile hosts forming a temporary network without the aid of any established infrastructure or centralized administration. Mobile hosts rely on each other to keep the network connected. Each host is not only mobile hosts but also router. So how to design a routing protocol is the most important problem. Dynamic source routing is a kind of routing protocol. In this paper we suggest a new automatic route shortening method and an energy-aware routing mechanism based on DSR.

  • PDF

A Performance Comparison of Routing Protocols for Mobile Ad hoc Networks using the NS-3 (NS-3를 사용한 이동 애드혹 네트워크용 라우팅 프로토콜 성능 비교)

  • Jang, Jaeshin;Ngo, Van-Vuong;Wie, Sunghong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.2
    • /
    • pp.308-316
    • /
    • 2015
  • In this paper, we carried out performance comparison of four routing protocols that had been proposed for mobile ad hoc networks using the NS-3 network simulator. Those four routing protocols consist of two proactive routing protocols, DSDV(destination-sequenced distance vector) and OLSR(optimized link state routing), and two reactive routing protocols, AODV(ad-hoc on-demand distance vector) and DSR(dynamic source routing). Two performance metrics, system throughput and packet delivery ratio, are adopted and performance evaluation was carried out in a square communication area where each communicating mobile node moves independently. Numerical results show that the AODV routing protocol provides the best performance among those four routing protocols.

Fault Tolerant Routing Algorithm Based On Dynamic Source Routing

  • Ummi, Masruroh Siti;Park, Yoon-Young;Um, Ik-Jung;Bae, Ji-Hye
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.11a
    • /
    • pp.223-224
    • /
    • 2009
  • A wireless ad hoc network is a decentralized wireless network. The network is ad hoc because each node is willing to forward data for other nodes, and so the determination of which nodes forward data is made dynamically based on the network connectivity. In this paper, we proposed new route maintenance algorithm to improve the efficiency and effective in order to reach destination node. In this algorithm we improve existing route maintenance in Dynamic Source Routing protocol, to improve the algorithm we make a new message we call Emergency Message (EMM). The emergency message used by the node moved to provide information of fault detection.

Dynamic Route Guidance via Road Network Matching and Public Transportation Data

  • Nguyen, Hoa-Hung;Jeong, Han-You
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.756-761
    • /
    • 2021
  • Dynamic route guidance (DRG) finds the fastest path from a source to a destination location considering the real-time congestion information. In Korea, the traffic state information is available by the public transportation data (PTD) which is indexed on top of the node-link map (NLM). While the NLM is the authoritative low-detailed road network for major roads only, the OpenStreetMap road network (ORN) supports not only a high-detailed road network but also a few open-source routing engines, such as OSRM and Valhalla. In this paper, we propose a DRG framework based on road network matching between the NLM and ORN. This framework regularly retrieves the NLM-indexed PTD to construct a historical speed profile which is then mapped to ORN. Next, we extend the Valhalla routing engine to support dynamic routing based on the historical speed profile. The numerical results at the Yeoui-do island with collected 11-month PTD show that our DRG framework reduces the travel time up to 15.24 % and improves the estimation accuracy of travel time more than 5 times.

Performance Evaluation of Position-based and Non-position-based Routing Protocols in a Vehicular Ad-Hoc Network (VANET에 있어서 위치기반과 비위치기반 라우팅프로토콜의 성능 평가)

  • Jo, Jun-Mo;Choi, Dae-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.2
    • /
    • pp.213-218
    • /
    • 2006
  • In this paper, we evaluate and compare performance between position-based and non-position-based routing protocols in a vehicular ad-hoc network. The protocols evaluated in this paper for many performance evaluation aspects are a position-based routing protocol, GPSR (Greedy Perimeter Stateless Routing), and the non-position-based such as AODV (Ad-hoc On-Demand Distance Vector) and DSR (Dynamic Source Routing) protocols. The three protocol characteristics such as Packet Delivery Ratio, Latency of first packet per connection, and Average number of hops depending on distance are compared and evaluated. As the result of simulation, the AODV performed better than the DSR. However, due to the high mobility characteristic of a vehicular ad-hoc network, GPSR, the position-based routing performs better than the non-position-based routing protocols such as AODV and DSR in a vehicular ad-hoc network environment.

  • PDF

A Study on Routing Protocol using C-NODE for Mobile Ad-Hoc Networking (Mobile Ad-hoc Networking에서의 C-NODE를 이용한 Routing Protocol에 관한 연구)

  • Choi, Bong-Han
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.1 s.39
    • /
    • pp.195-201
    • /
    • 2006
  • This thesis proposes hybrid routing protocol that mix proactive routing protocol and reactive routing protocol used in Ad hoc network. Proposed method is that establish special node offering network service of nods which construct Ad hoc network and do routing different from existing hybrid routing protocol, ZRP. Special node doing these parts is called C-node. Routing using C-node can accompany efficient routing by decreasing path institution time and flooding time than existing routing protocol.

  • PDF

Dynamic Source Multi-path Routing Protocol for Wireless Ad-hoc Network Environments (무선 에드-혹 네트워크 환경을 위한 동적다중경로라우팅 프로토콜)

  • Kim, Moon-Jeong;Eom, Young-Ik
    • Journal of KIISE:Information Networking
    • /
    • v.28 no.3
    • /
    • pp.336-346
    • /
    • 2001
  • A wireless ad-hoc network is a temporal network formed by a collection of wireless mobile nodes without the aid of any existing network infrastnlcture or centralized administration. Currently, numerous routing protocols have been developed for changing messages between nodes in a wireless ad-hoc network. Applications of wireless ad-hoc network technology are various and proper routing protocol must be used according to application domain or network size. In a wireless ad-hoc network. some hosts want services from fixed networks. For supporting such services, it is necessary to interconnect wireless ad-hoc networks and fixed networks. The DSMIHDynamic Source Multipath Routing) protocol, proposed in this paper, focuses on supporting seamless communication services between the nodes within a wireless ad-hoc network and providing fixed networks to the mobile hosts in wireless an-hoc networks. In DSMR protocol, each node need not broadcast routing messages periodically. and mobile hosts that to send data packets initiate route request and route establishment procedure. By maintaining multiple paths in each node. faster route re-establishment is also possible in our scheme.

  • PDF

Performance Evaluation of Directional AODV Routing Protocol for Wireless Mesh Networks (무선 메쉬 네트워크를 위한 방향섬 AODV 라우팅 프로토콜의 성능 평가)

  • Choi, Jae-In;Kim, Dae-Hwan;Le, Anh Ngoc;Lee, In-Soo;Cho, You-Ze
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.9B
    • /
    • pp.795-801
    • /
    • 2008
  • Wireless Mesh Networks (WMNs) are popular due to their low cost and rapid deployment. Currently, many WMN researchers often considers the use of ad-hoc routing protocols because WMNs are similar to the ad-hoc networks. Some of currently deployed WMNs consider to use on-demand routing protocols such as Ad-hoc On-demand Distance Vector (AODV) and Dynamic Source Routing (DSR). But, AODV are not appropriate for Wireless Mesh Networks (WMNs), because flooding-based route discovery is both redundant and expensive in terms of control message overhead. In this paper, we propose a directional AODV (D-AODV) routing protocol based on hop count to a gateway. We implement the D-AODV routing protocol and evaluate the performance of the D-AODV on the testbed. The measurement results show that the D-AODV can enhance the network throughput by reducing the routing overhead.