• Title/Summary/Keyword: dynamic seismic analysis

Search Result 1,388, Processing Time 0.029 seconds

Seismic Fragility Analysis of Base Isolated Liquid Storage Tank (면진 유체 저장 탱크의 지진취약도 분석)

  • Ahn, Sung-Moon;Choi, In-Kil;Choun, Young-Sun
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.453-460
    • /
    • 2005
  • In this study, the seismic fragility analysis of a base isolated condensate storage tank installed in the nuclear power plant. The condensate storage tank is safety related structure in a nuclear power plant. The failure of this tank affect significantly to the core damage frequency of the nuclear power plants. The seismic analysis of the liquid storage tank was performed by the simple calculation method and the dynamic time storage analysis method. The convective and impulsive fluid mass is modeled as added masses proposed by several researchers. To evaluate the effectiveness of the isolation system, the comparison of HCLPF and core damage frequencies in non-isolated and isolated cases are carried out. It can be found from the results that the seismic isolation system increases the seismic capacity of a condensate storage tank and decreases the core damage frequency significantly.

  • PDF

Probabilistic Seismic Safety Assessment of PSC Containment Building Considering Nonlinear Material Properties (재료비선형 특성을 고려한 PSC 격납건물의 확률론적 내진안전성 평가)

  • Ahn, Seong-Moon;Choi, In-Kil;Chun, Young-Sun
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.597-604
    • /
    • 2006
  • The seismic safety of the prestressed concrete containment building was evaluated by the seismic fragility analysis based on the nonlinear dynamic time-history analyses. Four kinds of earthquake ground motions were used for the seismic fragility analysis of the containment building to consider the potential earthquake hazard. The conventional seismic fragility analysis of the safety related structures in nuclear pouter plant have been performed by using the linear elastic analysis results for the seismic design. In this study, the displacement based seismic fragility analysis method was proposed.

  • PDF

An improved pushover analysis procedure for multi-mode seismic performance evaluation of bridges: (2) Correlation study for verification

  • Kwak, Hyo-Gyoung;Shin, Dong Kyu
    • Structural Engineering and Mechanics
    • /
    • v.33 no.2
    • /
    • pp.239-255
    • /
    • 2009
  • In the companion paper, a simple but effective analysis procedure termed an Improved Modal Pushover Analysis (IMPA) is proposed to estimate the seismic capacities of multi-span continuous bridge structures on the basis of the modal pushover analysis, which considers all the dynamic modes of a structure. In contrast to previous studies, the IMPA maintains the simplicity of the capacity-demand curve method and gives a better estimation of the maximum dynamic response in a bridge structure. Nevertheless, to verify its applicability, additional parametric studies for multi-span continuous bridges with large differences in the length of adjacent piers are required. This paper, accordingly, concentrates on a parametric study to review the efficiency and limitation in the application of IMPA to bridge structures through a correlation study between various analytical models including the equivalent single-degree-of-freedom method (ESDOF) and modal pushover analysis (MPA) that are usually used in the seismic design of bridge structures. Based on the obtained numerical results, this paper offers practical guidance and/or limitations when using IMPA to predict the seismic response of a bridge effectively.

Assessment of pushover-based method to a building with bidirectional setback

  • Fujii, Kenji
    • Earthquakes and Structures
    • /
    • v.11 no.3
    • /
    • pp.421-443
    • /
    • 2016
  • When conducting seismic assessment of an asymmetric building, it is essential to carry out three-dimensional analysis considering all the possible directions of seismic input. For this purpose, the author proposed a simplified procedure is to predict the largest peak seismic response of an asymmetric building subjected to horizontal bidirectional ground motion acting in an arbitrary angle of incidence in previous study. This simplified procedure has been applied to torsionally stiff (TS) asymmetric buildings with regular elevation. However, the suitability of this procedure to estimate the peak response of an asymmetric building with vertical irregularity, such as an asymmetric building with setback, has not been assessed. In this article, the pushover-based simplified procedure is applied to estimate the peak response of asymmetric buildings with bidirectional setback. Nonlinear dynamic (time-history) analysis of two six-storey asymmetric buildings with bidirectional setback and designed according to strong-column weak beam concept is carried out considering various directions of seismic input, and the results compared with those estimated by the proposed method. The largest peak displacement estimated by the simplified method agrees well with the envelope of the dynamic analysis response. The suitability assessment of the simplified procedure to analysed building models is made as well based on pushover analysis results.

Rapid seismic vulnerability assessment by new regression-based demand and collapse models for steel moment frames

  • Kia, M.;Banazadeh, M.;Bayat, M.
    • Earthquakes and Structures
    • /
    • v.14 no.3
    • /
    • pp.203-214
    • /
    • 2018
  • Predictive demand and collapse fragility functions are two essential components of the probabilistic seismic demand analysis that are commonly developed based on statistics with enormous, costly and time consuming data gathering. Although this approach might be justified for research purposes, it is not appealing for practical applications because of its computational cost. Thus, in this paper, Bayesian regression-based demand and collapse models are proposed to eliminate the need of time-consuming analyses. The demand model developed in the form of linear equation predicts overall maximum inter-story drift of the lowto mid-rise regular steel moment resisting frames (SMRFs), while the collapse model mathematically expressed by lognormal cumulative distribution function provides collapse occurrence probability for a given spectral acceleration at the fundamental period of the structure. Next, as an application, the proposed demand and collapse functions are implemented in a seismic fragility analysis to develop fragility and consequently seismic demand curves of three example buildings. The accuracy provided by utilization of the proposed models, with considering computation reduction, are compared with those directly obtained from Incremental Dynamic analysis, which is a computer-intensive procedure.

Effect of base isolation systems on increasing the resistance of structures subjected to progressive collapse

  • Tavakoli, Hamid R.;Naghavi, Fahime;Goltabar, Ali R.
    • Earthquakes and Structures
    • /
    • v.9 no.3
    • /
    • pp.639-656
    • /
    • 2015
  • Seismic isolation devices are commonly used to mitigate damages caused by seismic responses of structures. More damages are created due to progressive collapse in structures. Therefore, evaluating the impact of the isolation systems to enhance progressive collapse-resisting capacity is very important. In this study, the effect of lead rubber bearing isolation system to increase the resistance of structures against progressive collapse was evaluated. Concrete moment resisting frames were used in both the fixed and base-isolated model structures. Then, progressive collapse-resisting capacity of frames was investigated using the push down nonlinear static analysis under gravity loads that specified in GSA guideline. Nonlinear dynamic analysis was performed to consider dynamic effects column removal under earthquake. The results of the push down analysis are highly dependent on location of removal column and floor number of buildings. Also, seismic isolation system does not play an effective role in increasing the progressive collapse-resisting capacities of structures under gravity loads. Base isolation helps to localize failures and prevented from spreading it to intact span under seismic loads.

Generation of Design Spectrum Compatible Ground Motion in Time Domain (시간영역에서 생성되는 설계응답스펙트럼 맞춤형 지진파 생성)

  • Jeong, Chang-Gyun;Park, Du-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1250-1257
    • /
    • 2009
  • Due to the improvement of the seismic hazard analysis method and the design code, dynamic analysis method is widely used. To conduct dynamic analysis, various coefficients should be designated. The time history acceleration is one of the most essential factor. However, strong earthquake motion data from the outside of the country have been used to conduct dynamic analysis without considering of the ground motion parameters. In this study, the methodology to choose appropriate input motion is developed by using time domain design spectrum matching procedure. Two examples are applied to verify the methodology. The Result shows that the methodology satisfies seismic circumstances and the design code.

  • PDF

Seismic damage estimation through measurable dynamic characteristics

  • Lakshmanan, N.;Raghuprasad, B.K.;Muthumani, K.;Gopalakrishnan, N.;Sreekala, R.
    • Computers and Concrete
    • /
    • v.4 no.3
    • /
    • pp.167-186
    • /
    • 2007
  • Ductility based design of reinforced concrete structures implicitly assumes certain damage under the action of a design basis earthquake. The damage undergone by a structure needs to be quantified, so as to assess the post-seismic reparability and functionality of the structure. The paper presents an analytical method of quantification and location of seismic damage, through system identification methods. It may be noted that soft ground storied buildings are the major casualties in any earthquake and hence the example structure is a soft or weak first storied one, whose seismic response and temporal variation of damage are computed using a non-linear dynamic analysis program (IDARC) and compared with a normal structure. Time period based damage identification model is used and suitably calibrated with classic damage models. Regenerated stiffness of the three degrees of freedom model (for the three storied frame) is used to locate the damage, both on-line as well as after the seismic event. Multi resolution analysis using wavelets is also used for localized damage identification for soft storey columns.

Conceptual configuration and seismic performance of high-rise steel braced frame

  • Qiao, Shengfang;Han, Xiaolei;Zhou, Kemin;Li, Weichen
    • Steel and Composite Structures
    • /
    • v.23 no.2
    • /
    • pp.173-186
    • /
    • 2017
  • Conceptual configuration and seismic performance of high-rise steel frame-brace structure are studied. First, the topology optimization problem of minimum volume based on truss-like material model under earthquake action is presented, which is solved by full-stress method. Further, conceptual configurations of 20-storey and 40-storey steel frame-brace structure are formed. Next, the 40-storeystructure model is developed in Opensees. Two common configurations are utilized for comparison. Last, seismic performance of 40-storey structure is derived using nonlinear static analysis and nonlinear dynamic analysis. Results indicate that structural lateral stiffness and maximum roof displacement can be improved using brace. Meanwhile seismic damage can also be decreased. Moreover, frame-brace structure using topology optimization is most favorable to enhance lateral stiffness and mitigate seismic damage. Thus, topology optimization is an available way to form initial conceptual configuration in high-rise steel frame-brace structure.

Performance evaluation of composite moment-frame structures with seismic damage mitigation systems using wavelet analyses

  • Kaloop, Mosbeh R.;Son, Hong Min;Sim, Hyoung-Bo;Kim, Dongwook;Hu, Jong Wan
    • Structural Engineering and Mechanics
    • /
    • v.74 no.2
    • /
    • pp.201-214
    • /
    • 2020
  • This study aims at evaluating composite moment frame structures (CFS) using wavelet analysis of the displacement behavior of these structures. Five seismic damage mitigation systems' models of 9-story CFS are examined namely, basic (Model 1), reinforced (Model 2), buckling restrained braced (BRB) (Model 3), lead rubber bearing (LRB) (Model 4), and composite (Model 5) moment frames. A novel integration between continuous and discrete wavelet transforms is designed to estimate the wavelet power energy and variance of measurements' behaviors. The behaviors of the designed models are evaluated under influence of four seismic loads to study the dynamic performance of CFS in the frequency domain. The results show the behaviors of models 3 and 5 are lower than other models in terms of displacement and frequency performances. Model 3 has been shown lower performances in terms of energy and variance wavelets along the monitoring time; therefore, Model 3 demonstrates superior performance and low probability of failure under seismic loads. Furthermore, the wavelet variance analysis is shown a powerful tool that can be used to assess the CFS under seismic hazards.