• Title/Summary/Keyword: dynamic science assessment

Search Result 184, Processing Time 0.037 seconds

Dynamic stress response in the nanocomposite concrete pipes with internal fluid under the ground motion load

  • Keshtegar, Behrooz;Tabatabaei, Javad;Kolahchi, Reza;Trung, Nguyen-Thoi
    • Advances in concrete construction
    • /
    • v.9 no.3
    • /
    • pp.327-335
    • /
    • 2020
  • Concrete pipes are considered important structures playing integral role in spread of cities besides transportation of gas as well as oil for far distances. Further, concrete structures under seismic load, show behaviors which require to be investigated and improved. Therefore, present research concerns dynamic stress and strain alongside deflection assessment of a concrete pipe carrying water-based nanofluid subjected to seismic loads. This pipe placed in soil is modeled through spring as well as damper. Navier-Stokes equation is utilized in order to gain force created via fluid and, moreover, mixture rule is applied to regard the influences related to nanoparticles. So as to model the structure mathematically, higher order refined shear deformation theory is exercised and with respect to energy method, the motion equations are obtained eventually. The obtained motion equations will be solved with Galerkin and Newmark procedures and consequently, the concrete pipe's dynamic stress, strain as well as deflection can be evaluated. Further, various parameters containing volume percent of nanoparticles, internal fluid, soil foundation, damping and length to diameter proportion of the pipe and their influences upon dynamic stress and strain besides displacement will be analyzed. According to conclusions, increase in volume percent of nanoparticles leads to decrease in dynamic stress, strain as well as displacement of structure.

Hybrid parallel smooth particle hydrodynamic for probabilistic tsunami risk assessment and inland inundation

  • Sihombing, Fritz;Torbol, Marco
    • Smart Structures and Systems
    • /
    • v.23 no.2
    • /
    • pp.185-194
    • /
    • 2019
  • The probabilistic tsunami risk assessment of large coastal areas is challenging because the inland propagation of a tsunami wave requires an accurate numerical model that takes into account the interaction between the ground, the infrastructures, and the wave itself. Classic mesh-based methods face many challenges in the propagation of a tsunami wave inland due to their ever-moving boundary conditions. In alternative, mesh-less based methods can be used, but they require too much computational power in the far-field. This study proposes a hybrid approach. A mesh-based method propagates the tsunami wave from the far-field to the near-field, where the influence of the sea floor is negligible, and a mesh-less based method, smooth particle hydrodynamic, propagates the wave onto the coast and inland, and takes into account the wave structure interaction. Nowadays, this can be done because the advent of general purpose GPUs made mesh-less methods computationally affordable. The method is used to simulate the inland propagation of the 2004 Indian Ocean tsunami off the coast of Indonesia.

Assessment of Effects of Predictors on the Corporate Bankruptcy Using Hierarchical Bayesian Dynamic Model

  • Sung Min-Je;Cho Sung-Bin
    • Management Science and Financial Engineering
    • /
    • v.12 no.1
    • /
    • pp.65-77
    • /
    • 2006
  • This study proposes a Bayesian dynamic model in a hierarchical way to assess the time-varying effect of risk factors on the likelihood of corporate bankruptcy. For the longitudinal data, we aim to describe dynamically evolving effects of covariates more articulately compared to the Generalized Estimating Equation approach. In the analysis, it is shown that the proposed model outperforms in terms of sensitivity and specificity. Besides, the usefulness of this study can be found from the flexibility in describing the dependence structure among time specific parameters and suitability for assessing the time effect of risk factors.

A Study on the Criteria to Decide the Number of Aircrafts Considering Operational Characteristics (항공기 운용 특성을 고려한 적정 운용 대수 산정 기준 연구)

  • Son, Young-Su;Kim, Seong-Woo;Yoon, Bong-Kyoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.41-49
    • /
    • 2014
  • In this paper, we consider a method to access the number of aircraft requirement which is a strategic variable in national security. This problem becomes more important considering the F-X and KF-X project in ROKAF. Traditionally, ATO(Air Tasking Order) and fighting power index have been used to evaluate the number of aircrafts required in ROKAF. However, those methods considers static aspect of aircraft requirement. This paper deals with a model to accommodate dynamic feature of aircraft requirement using absorbing Markov chain. In conclusion, we suggest a dynamic model to evaluate the number of aircrafts required with key decision variables such as destroying rate, failure rate and repair rate.

The effect of infill walls on the seismic behavior of boundary columns in RC frames

  • Fenerci, Aksel;Binici, Baris;Ezzatfar, Pourang;Canbay, Erdem;Ozcebe, Guney
    • Earthquakes and Structures
    • /
    • v.10 no.3
    • /
    • pp.539-562
    • /
    • 2016
  • The seismic behavior of a ${\frac{1}{2}}$ scaled, three-story three-bay RC frame with masonry infill walls was studied experimentally and numerically. Pseudo-dynamic test results showed that despite following the column design provisions of modern seismic codes and neglecting the presence of infill walls, shear induced damage is unavoidable in the boundary columns. A finite element model was validated by using the results of available one-story one-bay frame tests in the literature. Simulations of the examined test frame demonstrated that boundary columns are subjected to shear demands in excess of their shear capacity. Seismic assessment of the test frame was conducted by using ASCE/SEI 41-06 (2006) guidelines and the obtained results were compared with the damage observed during experiment. ASCE/SEI 41-06 method for the assessment of boundary columns was found unsatisfactory in estimating the observed damage. Damage estimations were improved when the strain limits were used within the plastic hinge zone instead of column full height.

The Effect of Berg Balance Scale Evaluating Frequency for Dynamic Balance and Walking Speed of Patients With Stroke (버그 균형 척도 평가 빈도수가 뇌졸중 환자의 동적 균형 및 보행 속도에 미치는 영향)

  • Choi, Hyun-Suk;Kim, Hyun-Jin
    • Journal of Korean Physical Therapy Science
    • /
    • v.19 no.4
    • /
    • pp.7-15
    • /
    • 2012
  • Background : The purpose of this study is to determine the effect Berg Balance Scale(BBS) evaluating frequency on the walking speed and dynamic balance control in patient with stroke. Method : sixteen patient with stroke were randomly allocated to an experimental and control group of eight patients each. For the experimental group, we performed both general physical therapy and BBS and general physical therapy only for the control group. The general physical therapy programs for the 2 group were conducted for 1 hour 1 a day, 5 times a week for 4 weeks, and BBS for the experimental group was conducted for 1 time a week. Result : A comparison of the Berg Balance Scale(BBS). Timed Up Go test(TUG) and 10 meter Walking Test(10mWT) score obtained before and after the 4-week treatment revealed statistical significant different(p<.05) for the experimental group. BBS evaluated weekly and the first day and the last day evaluated in both groups after 4 weeks of BBS assessment improved significantly were (p<.05) especially in the assessment group on a weekly basis more improvement was. BBS weekly assessment group and the first day and on the last day, a group evaluation after 4 weeks in both the change of the TUG, 10mWT was significantly improved in the evaluation group(p<.05). Conclusion : 1 time a week of the BBS assessment of with stroke patients BBS, TUG, 10mWT that can help to improve. especially on a weekly basis, more has been improved.

  • PDF

Dynamic Deformation Behavior of Aluminum Alloys Under High Strain Rate Compressive/Tensile Loading

  • Lee, Ouk-Sub;Kim, Guan-Hee;Kim, Myun-Soo;Hwang, Jai-Sug
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.787-795
    • /
    • 2003
  • Mechanical properties of the materials used for transportations and industrial machinery under high strain rate loading conditions such as seismic loading are required to provide appropriate safety assessment to these mechanical structures. The Split Hopkinson Pressure Bar (SHPB) technique with a special experimental apparatus can be used to obtain the material behavior under high strain rate loading conditions. In this paper, dynamic deformation behaviors of the aluminum alloys such as A12024-T4, A1606 IT-6 and A17075-T6 under both high strain rate compressive and tensile loading conditions are determined using the SHPB technique.

A SURVEY OF QUALITY OF SERVICE IN MULTI-TIER WEB APPLICATIONS

  • Ghetas, Mohamed;Yong, Chan Huah;Sumari, Putra
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.1
    • /
    • pp.238-256
    • /
    • 2016
  • Modern web services have been broadly deployed on the Internet. Most of these services use multi-tier architecture for flexible scaling and software reusability. However, managing the performance of multi-tier web services under dynamic and unpredictable workload, and different resource demands in each tier is a critical problem for a service provider. When offering quality of service assurance with least resource usage costs, web service providers should adopt self-adaptive resource provisioning in each tier. Recently, a number of rule- and model-based approaches have been designed for dynamic resource management in virtualized data centers. This survey investigates the challenges of resource provisioning and provides a competing assessment on the existing approaches. After the evaluation of their benefits and drawbacks, the new research direction to improve the efficiency of resource management and recommendations are introduced.

Effects of Elastic Band Exercise Combined with Swiss Ball Exercise on Lower Extremity Muscle Strength, Balance, and Pain in Middle-Aged Women with Osteoarthritis

  • Yohan Yoo;Jongeun Yim
    • Physical Therapy Rehabilitation Science
    • /
    • v.12 no.3
    • /
    • pp.355-364
    • /
    • 2023
  • Objective: The aim of this study is to test the effects of elastic band exercise accompanied by Swiss ball exercise on lower limb muscle strength, balance and pain in middle-aged women with osteoarthritis. Design: A randomized controlled trial. Methods: Thirty-five participants were randomly assigned to the experimental group (n=18), which performed elastic band exercise combined with Swiss ball exercise, and the control group (n=17), which performed elastic band exercise only. Both groups did a 30-minute session of exercise three times a week for eight weeks and were assessed for lower extremity muscle strength, static and dynamic balance, and pain levels before the first therapy session. All participating patients underwent outcome assessment after eight weeks of therapy without any additional treatment. Results: The experimental group made a significant increase in muscle strength of the lower extremities, static and dynamic balance ability, and pain level (p<0.05). The control group made a significant improvement in lower limb muscle strength, dynamic balance ability and pain level (p<0.05) with no such improvement in static balance ability. The exercise group made a significant increase in static and dynamic balance ability and pain level compared to the control group (p<0.05). Conclusions: These results demonstrated that both Swiss ball exercise and elastic band exercise were effective for middle-aged women with osteoarthritis and found that elastic band exercise combined with Swiss ball exercise produced more significant effects on their balance and pain.

Assessment on Natural Frequencies of Structures using Field Measurement and FE Analysis

  • Kim, Do Hyun;Kim, Ji Young
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.4
    • /
    • pp.305-310
    • /
    • 2014
  • Wind-induced responses of a structure are often evaluated through dynamic analysis, where measured wind forces obtained from a wind-tunnel test and dynamic properties obtained from a FE (Finite Element) model are utilized. However, the FE model generally shows considerable discrepancies in the estimation of natural frequencies compared to field measurements due to some assumptions and simplifications. In this paper, a calibration method that can improve the estimation of natural frequencies in the FE model is proposed, and specific cases are studied for its validity with comparison to the field measurement results.