• Title/Summary/Keyword: dynamic scheduling

Search Result 524, Processing Time 0.022 seconds

RBF Network Based QFT Parameter-Scheduling Control Design for Linear Time-Varying Systems and Its Application to a Missile Control System (시변시스템을 위한 RBF 신경망 기반의 QFT 파라미터계획 제어기법과 alt일 제어시스템에의 적용)

  • 임기홍;최재원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.199-199
    • /
    • 2000
  • Most of linear time-varying(LTV) systems except special cases have no general solution for the dynamic equations. Thus, it is difficult to design time-varying controllers in analytic ways, and other control design approaches such as robust control have been applied to control design for uncertain LTI systems which are the approximation of LTV systems have been generally used instead. A robust control method such as quantitative feedback theory(QFT) has an advantage of guaranteeing the stability and the performance specification against plant parameter uncertainties in frozen time sense. However, if these methods are applied to the approximated linear time-invariant(LTI) plants which have large uncertainty, the designed control will be constructed in complicated forms and usually not suitable for fast dynamic performance. In this paper, as a method to enhance the fast dynamic performance, the approximated uncertainty of time-varying parameters are reduced by the proposed QFT parameter-scheduling control design based on radial basis function (RBF) networks for LTV systems with bounded time-varying parameters.

  • PDF

A Comparative Study of Dynamic Dispatching Rule for Machine and AGV of Flexible Manufacturing System (유연생산시스템의 기계와 AGV의 동적 작업배정규칙 비교연구)

  • Lee, Sung-Woo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.12 no.1
    • /
    • pp.19-25
    • /
    • 2009
  • We suggest and evaluate a dynamic scheduling rule of machines and material handling systems for on-line operation in job shop type Flexible Manufacturing System. Alternating status should be able to take operation scheduling procedures and without delay in dynamic industrial environments effectively. The interaction(SPT-NS, SPT-QSNS, SPT-NUJ, EDD-NS, EDD-QSNS, EDD-NUJ, CR-NS, CR-QSNS, CR-NUJ) between machine operation scheduling and AGV dispatching rule were also studied in this research. The performance evaluation which was obtained from DSS compares the performance of Flow time, and Empty to loaded travel ratio. It is Compared with the best rules & two system.

  • PDF

Guaranteed Dynamic Priority Assignment Schemes for Real-Time Tasks with (m, k)-Firm Deadlines

  • Cho, Hyeon-Joong;Chung, Yong-Wha;Park, Dai-Hee
    • ETRI Journal
    • /
    • v.32 no.3
    • /
    • pp.422-429
    • /
    • 2010
  • We present guaranteed dynamic priority assignment schemes for multiple real-time tasks subject to (m, k)-firm deadlines. The proposed schemes have two scheduling objectives: providing a bounded probability of missing (m, k)-firm constraints and maximizing the probability of deadline satisfactions. The second scheduling objective is especially necessary in order to provide the best quality of service as well as to satisfy the minimum requirements expressed by (m, k)-firm deadlines. We analytically establish that the proposed schemes provide a guarantee on the bounded probability of missing (m, k)-firm constraints. Experimental studies validate our analytical results and confirm the effectiveness and superiority of the proposed schemes with regard to their scheduling objectives.

Energy Aware Task Scheduling for a Distributed MANET Computing Environment

  • Kim, Jaeseop;Kim, Jong-Kook
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.987-992
    • /
    • 2016
  • This study introduces an example environment where wireless devices are mobile, devices use dynamic voltage scaling, devices and tasks are heterogeneous, tasks have deadline, and the computation and communication power is dynamically changed for energy saving. For this type of environment, the efficient system-level energy management and resource management for task completion can be an essential part of the operation and design of such systems. Therefore, the resources are assigned to tasks and the tasks may be scheduled to maximize a goal which is to minimize energy usage while trying to complete as many tasks as possible by their deadlines. This paper also introduces mobility of nodes and variable transmission power for communication which complicates the resource management/task scheduling problem further.

Energy-Efficient Adaptive Dynamic Sensor Scheduling for Target Monitoring in Wireless Sensor Networks

  • Zhang, Jian;Wu, Cheng-Dong;Zhang, Yun-Zhou;Ji, Peng
    • ETRI Journal
    • /
    • v.33 no.6
    • /
    • pp.857-863
    • /
    • 2011
  • Due to uncertainties in target motion and randomness of deployed sensor nodes, the problem of imbalance of energy consumption arises from sensor scheduling. This paper presents an energy-efficient adaptive sensor scheduling for a target monitoring algorithm in a local monitoring region of wireless sensor networks. Owing to excessive scheduling of an individual node, one node with a high value generated by a decision function is preferentially selected as a tasking node to balance the local energy consumption of a dynamic clustering, and the node with the highest value is chosen as the cluster head. Others with lower ones are in reserve. In addition, an optimization problem is derived to satisfy the problem of sensor scheduling subject to the joint detection probability for tasking sensors. Particles of the target in particle filter algorithm are resampled for a higher tracking accuracy. Simulation results show this algorithm can improve the required tracking accuracy, and nodes are efficiently scheduled. Hence, there is a 41.67% savings in energy consumption.

A Development of Arrival Scheduling and Advisory Generation Algorithms based on Point-Merge Procedure (Point-Merge 절차를 이용한 도착 스케줄링 및 조언 정보 생성 알고리즘 개발)

  • Hong, Sungkweon;Kim, Soyeun;Jeon, Daekeun;Eun, Yeonju;Oh, Eun-Mi
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.25 no.3
    • /
    • pp.44-50
    • /
    • 2017
  • This paper proposes arrival scheduling and advisory generation algorithms which can be used in the terminal airspace with Point-Merge procedures. The proposed scheduling algorithm consists of two steps. In the first step, the algorithm computes aircraft schedules at the entrance of the Point-Merge sequencing legs based on First-Come First-Served(FCFS) strategy. Then, in the second step, optimal sequence and schedules of all aircraft at the runway are computed using Multi-Objective Dynamic Programming(MODP) method. Finally, the advisories that have to be provided to the air traffic controllers are generated. To demonstrate the proposed algorithms, the simulation was conducted based on Jeju International Airport environments.

A Study on Dynamic Scheduling in Flexible Manufacturing System Environment (유연생산시스템 환경 하에서의 동적 일정계획에 관한 연구)

  • Lee Sang-Wan;Kim Hae-Sic;Cho Sung-Youl
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.27 no.2
    • /
    • pp.17-23
    • /
    • 2004
  • Changes in manufacturing system are those that occur during production and cause the systems to behave unpredictably. So scheduling problem in this dynamic Industrial environments is very complex. The main concept of this dissertation is to continuously monitor a manufacturing system status(Rate of Prior Job, Rate of Large Job, Rate of Shortest due date Job, Job Interval Time) and detect or predict a change so that scheduling system will react by modifying production schedule(dispaching rule) to lessen the effects of this change.

Prioritized Dynamic Rate Scheduling for Interactive GEO Satellite Networks (대화형 GEO 위성 네트워크를 위한 우선권기반 동적 데이터 전송률 스케줄링 체계)

  • Chang, Kun-Nyeong
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.32 no.3
    • /
    • pp.1-15
    • /
    • 2007
  • In this paper, the return link of interactive GEO satellite network providing multimedia services is considered. First, we classify data by delay characteristics, and analyze the numbers of expected lost packets and expected delay packets for each data class of each terminal. Next we mathematically formulate optimal rate scheduling model to minimize the weighted sum of the numbers of expected lost packets and expected delay packets considering priority of each data class. We also suggest a dynamic rate scheduling scheme based on Lagrangean relaxation technique and subgradient technique to solve the proposed model in a fast time. Extensive experiments show that the proposed scheme provides encouraging results.

A Two-Step Scheduling Algorithm to Support Dual Bandwidth Allocation Policies in an Ethernet Passive Optical Network

  • Lee, Ho-Sook;Yoo, Tae-Whan;Moon, Ji-Hyun;Lee, Hyeong-Ho
    • ETRI Journal
    • /
    • v.26 no.2
    • /
    • pp.185-188
    • /
    • 2004
  • In this paper, we design a two-step scheduling algorithm to support multiple bandwidth allocation policies for upstream channel access in an Ethernet passive optical network. The proposed scheduling algorithm allows us a simultaneous approach for multiple access control policies: static bandwidth allocation for guaranteed bandwidth service and dynamic bandwidth allocation for on-demand, dynamic traffic services. In order to reduce the scheduling complexity, we separate the process of the transmission start- time decision from the process of grant generation. This technique does not require the timing information of other bandwidth allocation modules, so respective modules are free from a heavy amount of timing information or complex processing.

  • PDF

Optimal Voltage and Reactive Power Scheduling for Saving Electric Charges using Dynamic Programming with a Heuristic Search Approach

  • Jeong, Ki-Seok;Chung, Jong-Duk
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.329-337
    • /
    • 2016
  • With the increasing deployment of distributed generators in the distribution system, a very large search space is required when dynamic programming (DP) is applied for the optimized dispatch schedules of voltage and reactive power controllers such as on-load tap changers, distributed generators, and shunt capacitors. This study proposes a new optimal voltage and reactive power scheduling method based on dynamic programming with a heuristic searching space reduction approach to reduce the computational burden. This algorithm is designed to determine optimum dispatch schedules based on power system day-ahead scheduling, with new control objectives that consider the reduction of active power losses and maintain the receiving power factor. In this work, to reduce the computational burden, an advanced voltage sensitivity index (AVSI) is adopted to reduce the number of load-flow calculations by estimating bus voltages. Moreover, the accumulated switching operation number up to the current stage is applied prior to the load-flow calculation module. The computational burden can be greatly reduced by using dynamic programming. Case studies were conducted using the IEEE 30-bus test systems and the simulation results indicate that the proposed method is more effective in terms of saving electric charges and improving the voltage profile than loss minimization.