• Title/Summary/Keyword: dynamic scanning

Search Result 356, Processing Time 0.03 seconds

A Flexure Guided Planar Scanner for Scanning Probe Microscope ; Part 1 : Design and Analysis of Static and Dynamic Properties (주사 현미경용 평면 스캐너 Part 1 :설계 및 정 · 동특성 해석)

  • Lee, Dong-Yeon;Lee, Moo-Yeon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.6 s.99
    • /
    • pp.667-673
    • /
    • 2005
  • This paper shows a method for design of the nano-positioning planar scanner used in the scanning probe microscope. The planar scanner is composed of flexure guides, piezoelectric actuators and feedback sensors. In the design of flexure guides, the Castigliano's theorem was used to find the stiffness of the guide. The motion amplifying mechanism was used in the piezoelectric actuator to achieve a large travel range. We found theoretically the travel range of the total system and verified using the commercial FEM(finite element method) program. The maximum travel range of the planar scanner is above than 140 $\mu$m. The 3 axis positioning capability was verified by the mode analysis using the FEM program.

Binding Structures of Diatomic Molecules to Co-Porphyrins on Au(111) Studied by Scanning Tunneling Microscopy

  • Lee, Soon-Hyeong;Kim, Ho-Won;Jeon, Jeong-Heum;Jang, Won-Jun;Kahng, Se-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.130-130
    • /
    • 2012
  • Axial bindings of diatomic molecules to metalloporphyrins involve in the dynamic processes of biological functions such as respiration, neurotransmission, and photosynthesis. The binding reactions are also useful in sensor applications and in control of molecular spins in metalloporphyrins for spintronic applications. Here, we present the binding structures of diatomic molecules to surface- supported Co-porphyrins studied using scanning tunneling microscopy. Upon gasexposure, three-lobed structures of Co-porphyrins transformed to bright ring shapes on Au(111), whereas H2-porphyrins of dark rings remained intact. The bright rings are explained by the structures of reaction complexes where a diatomic ligand, tilted away from the axis normal to the porphyrin plane, is under precession. Our results are consistent with previous bulk experiments using X-ray diffraction and nuclear magnetic resonance spectroscopy.

  • PDF

Measurement Data Comparison of Fast SAR Measurement System by Probe Arrays with Robot Scanning SAR Measurement System

  • Kim, Jun Hee;Gimm, Yoon-Myoung
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.4
    • /
    • pp.336-341
    • /
    • 2014
  • Dosimetry of radiating electromagnetic wave from mobile devices to human body has been evaluated by measuring Specific Absorption Rate (SAR). Usual SAR measurement system scans the volume by robot arm to evaluate RF power absorption to human body from wireless devices. It is possible to fast estimate the volume SAR by software deleting robot moving time with the 2D surface SAR data acquired by arrayed probes. This paper shows the principle of fast SAR measurement and the measured data comparison between the fast SAR system and the robot scanning system. Data of the fast SAR is well corresponding with data of robot scanning SAR within ${\pm}3$ dB, and its dynamic range covers from 10 mW/kg to 30 W/kg with 4.8 mm probe diameter.

Thermal stabilities and dynamic mechanical properties of dielectric materials for thermal imprint lithography (임프린트 공법적용을 위한 절연재료의 열적, 기계적 성질)

  • Cho, Jae-Choon;Ra, Seung-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.220-221
    • /
    • 2007
  • Recently, imprint lithography have received significant attention due to an alternative technology for photolithography on high performance microelectronic devices. In this work, we investigated thermal stabilities and dynamic mechanical properties of dielectric materials for thermal imprint lithography. Curing behaviours, thermal stabilities, and dynamic mechanical properties of the dielectric materials cured with various curing agent and spherical filler were studied using dynamic differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), rheometer and universal test machine(UTM).

  • PDF

Dynamic Characteristics of Lumbar Spine After Vertebroplasty (척추성형술 시술 후 요추의 동적 특성)

  • Kim S.H.;Ko S.K.;Chae S.W.;Park J.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.240-243
    • /
    • 2005
  • Osteoporosis, one of the age-related disease causes vertebra body fracture due to weakening trabecular bone and makes a substantial effect on load sharing among vertebras. Recently, vertebroplasty is one of the most popular treatment, as augmenting PMMA into vertebra. Biomechanical studies about vertebroplasty have been evaluated by several experiments or analysis under static loading but there has been no study on response under dynamic loading. This study included the FE analysis of patients who treated vertebroplasty under dynamic loading. For this study, 3-D FE model of lumbar spine(L1-L2) was modeled from CT scanning data and compared with experimental results in vitro in order to validate this model. Biomechanical behavior about each of normal person, osteoporotic patient and patient treated vertebroplasty for quantitative evaluations of vertebroplasty was compared and investigated.

  • PDF

Study of Cure Kinetics of Vacuum Bag Only Prepreg Using Differential Scanning Calorimetry (시차주사열량계를 이용한 진공백 성형 프리프레그의 경화 거동 연구)

  • Hyun, Dong Keun;Lee, Byoung Eon;Shin, Do Hoon;Kim, Ji Hoon
    • Composites Research
    • /
    • v.33 no.2
    • /
    • pp.44-49
    • /
    • 2020
  • The cure kinetics of carbon fiber-reinforced prepreg for Vacuum Bag Only(VBO) process was studied by differential scanning calorimetry (DSC). The total heat of reaction (ΔHtotal = 537.1 J/g) was defined by the dynamic scanning test using prepregs and isothermal scanning tests were performed at 130℃~180℃. The test results of isothermal scanning were observed that the heat of reaction was increased as the temperature elevated. The Kratz model was applied to analyze the cure kinetics of resin based on the test results. To verify the simulation model, the degree of cure from panels using different cure cycles were compared with the measurement. The simulation model showed that the error against the experimental value was less than 3.4%.

Observation of Morphology, Surface potential and Optical Transmission Images in the Thin Film Using SPM (SPM을 이용한 박막의 모폴로지, 표면전위와 광투과이미지 관찰)

  • Shin, Hoon-Kyu;Kwon, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.327-330
    • /
    • 2000
  • The scanning Maxwell-stress microscopy (SMM) is a dynamic noncontact electric force microscopy that allows simultaneous access to the electrical properties of molecular system such as surface potential, surface charge, dielectric constant and conductivity along with the topography. The Scanning near-field optical / atomic force microscopy (SNOAM) is a new tool for surface imaging which was introduced as one application of the atomic force microscope (AFM). Operated with non-contact forces between the optical fiber and sample as well as equipped with the piezoscanners, the instrument reports on surface topology without damaging or modifying the surface for measuring of optical characteristic in the films. We report our recent results of its application to nanoscopic study of domain structures and electrical functionality in organic thin films by SMM. Furthermore, we have illustrated the SNOAM image in obtaining the merocyanine dye films as well as the optical image.

  • PDF

Cure Kinetics of Diglycidyl ether of bisphenol A-Methylene dianiline-Succlnonitrile System (Diglycidyl ether of bisphenol A/Methylene dianiline/Succinonitrile계의 경화반응 속도론)

  • Jo, Seong-U;Sim, Mi-Ja;Kim, Sang-Ok
    • Korean Journal of Materials Research
    • /
    • v.2 no.4
    • /
    • pp.257-262
    • /
    • 1992
  • The cure kinetics of a diglycidyl ether of bisphenol A (DGEBA) with 4, 4'-methylene dianiline (MDA) added succinonitrile was studied through the dynamic run method by applying the data to the Kissinger equation which analyses the effect of the heating rate on the temperature at maximum reaction rate using Differential Scanning Calorimetry (DSC) analyzer in the range of 3$0^{\circ}C$-35$0^{\circ}C$. In the DGEBA/MDA system with SN, the activation energy ($E_a$) and the pre-exponential factor (A) were calculated. From these results, the rate constants (k) were obtained according to the different SN contents.

  • PDF

Analysis of the Ultrasonic Beam Profile Due to Variation of the Inter-Element Spacing for the Phased Array Transducer (페이즈드 어레이 트랜스듀서에 있어서 구성 압전소자의 간격 변화에 따른 초음파 빔 전파 특성 해석)

  • Choe, Sang-U;Lee, Jun-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.972-981
    • /
    • 2000
  • The phased array transducer has two distinct advantages. One is rapid scanning comparing with the conventional mechanical or manual scanning system. Therefore, output image is represented in real-time. The other is the dynamic focusing and the dynamic steering of ultrasonic beam. Only the delay times that are controlled electrically are used to focus and to steer beam without any lenses or wedges. In this study, the profile of the ultrasonic beam for the phased array transducer has been simulated in the Huygens principle with varying the inter-element spacing of the linear phased array transducer. From the result of this study, it was found that the ultrasonic beam spread wider as the inter-element spacing was decreased. However, the focusing effect was improved, even when the number of the element was not big. In addition, there was grating lobes that are constructed when the inter-element spacing is more than half wavelength. However, this grating lobe has lower amplitude than the main lobe.

An XY scanner with minimized coupling motions for the high speed AFM (상호 간섭이 최소화된 고속 원자현미경용 XY 스캐너 제작)

  • Park J.;Moon W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.653-656
    • /
    • 2005
  • This paper introduces design, fabrication and experiment process of a novel scanner for the high speed AFM(Atomic Force Microscope). A proper design modification is proposed through analyses on the dynamic characteristics of the existing linear motion stages using a dynamic analysis program, Recurdyn. Since the scanning speed of each direction is allowed to be different, the linear motion stage for the high-speed scanner of AFM can be so designed to have different resonance frequencies for the modes with one dominant displacement in the desired directions. One way to achieve this objective is to use one-direction flexure mechanism for each direction and to mount one stage for fast motion on the other stage for slow motion. This unsymmetrical configuration separates the frequencies of the two vibration modes with one dominant displacement in each desired direction, hence, the coupling between the motions in the two directions. In addition, a pair of actuators is used for each axis to decrease the cross talks in the two motions and gives a force large enough to actuate the slow motion stage, which carries the fast motion stage. After these design modifications, a novel scanner with scanning speed higher than 10 Hz can be achieved to realize undistorted images in the high speed AFM.

  • PDF