• 제목/요약/키워드: dynamic reliability

검색결과 1,130건 처리시간 0.026초

교량 충격하중의 확률론적 모델 (Reliability-Based Dynamic Load Model for Bridges)

  • 황의승
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1991년도 가을 학술발표회 논문집
    • /
    • pp.69-72
    • /
    • 1991
  • The purpose of this study is to develop the reliability-based dynamic load model for bridges. Analytial procedure to calculate the dynamic load is developed. Truck traffic is simulated using Monte Carlo method. Static and dynamic loads(deflections) are plotted on the normal probability paper to estimate the mean maximum dynamic load in bridge lifetime. The results may be served as a basis for new LRFD bridge design code.

  • PDF

무기체계 소프트웨어 신뢰성 시험 개선점 도출을 위한 소프트웨어 정적/동적 검증 분석 사례연구 (Analytical Study on Software Static/Dynamic Verification Methods for Deriving Enhancement of the Software Reliability Test of Weapon System)

  • 박지현;최병주
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제8권7호
    • /
    • pp.265-274
    • /
    • 2019
  • 무기체계 소프트웨어 개발 시 수행하는 신뢰성 시험은 크게 정적 검증과 동적 검증으로 구분된다. 정적 검증에서는 소프트웨어 코드를 수행시키지 않고 코딩 규칙 점검, 취약점 점검, 소스 코드 메트릭 점검을 수행하고, 동적 검증에서는 요구 사항을 기반으로 실제 소프트웨어를 실행시켜 기능을 검증하고 코드 실행률을 측정한다. 이러한 정적/동적 검증의 목적은 소프트웨어에 존재하는 결함을 발견하기 위한 것이다. 그러나 현재의 무기체계 소프트웨어 신뢰성 시험만으로는 여전히 탐지할 수 없는 결함들이 존재한다. 본 논문에서는 소프트웨어에서 발생할 수 있는 결함에 대해 무기체계 신뢰성 시험의 정적 검증과 동적 검증으로 탐지를 할 수 있는지를 사례실험을 통하여 분석 한다. 그 결과로 현재의 정적 검증과 동적 코드 커버리지 측정에서 더 나아가 무기체계 신뢰성 시험, 특히 동적 시험의 개선방안으로 연결하고자 한다.

H-pile의 지지력 특성 및 동역학적 공식의 신뢰도 평가 (Characteristics of Bearing Capacity and Reliability-based Evaluation of Pile-Driving Formulas for H Pile)

  • 오세욱;이준대
    • 한국안전학회지
    • /
    • 제18권1호
    • /
    • pp.81-88
    • /
    • 2003
  • Recently, pile foundations were constructed in rough or soft ground than ground of well condition thus it is important that prediction of ultimate bearing capacity and calculation of proper safety factor applied pile foundation design. This study were performed to dynamic loading tests for the thirty two piles at four different construction sites and selected pile at three site were performed to static loading tests and then compare with measured value and value of static and dynamic loading tests. The load-settlement curve form the dynamic loading tests by CAPWAP was very similar to the results obtained from the static load tests. Based on dynamic and static loading tests, the reliability of pile-driving formula were analyzed and then suggested with proper safety factor for prediction of allowable bearing capacity in this paper.

해상풍력발전기 지지구조물의 지진신뢰성해석 (Seismic Reliability Analysis of Offshore Wind Turbine Support Structure)

  • 이기남;김동현
    • 한국해양공학회지
    • /
    • 제29권5호
    • /
    • pp.342-350
    • /
    • 2015
  • A seismic reliability analysis of the jacket-type support structure for an offshore wind turbine was performed. When defining the limit state function using the dynamic response of the support structure, numerous dynamic calculations should be performedin an approach like the FORM (first-order reliability method). This causes a substantial increase in the analysis cost. Therefore, in this paper, a new reliability analysis approach using the static response is used. The dynamic effect of the response is considered by introducing a new parameter called the peak response factor (PRF). The probability distribution of the PRF could be estimated using the peak value of the dynamic response. The probability distribution of the PRF was obtained for a set of ground motions. A numerical example is considered to compare the proposed approach with the conventional static-response-based approach.

A dynamic reliability approach to seismic vulnerability analysis of earth dams

  • Hu, Hongqiang;Huang, Yu
    • Geomechanics and Engineering
    • /
    • 제18권6호
    • /
    • pp.661-668
    • /
    • 2019
  • Seismic vulnerability assessment is a useful tool for rational safety analysis and planning of large and complex structural systems; it can deal with the effects of uncertainties on the performance of significant structural systems. In this study, an efficient dynamic reliability approach, probability density evolution methodology (PDEM), is proposed for seismic vulnerability analysis of earth dams. The PDEM provides the failure probability of different limit states for various levels of ground motion intensity as well as the mean value, standard deviation and probability density function of the performance metric of the earth dam. Combining the seismic reliability with three different performance levels related to the displacement of the earth dam, the seismic fragility curves are constructed without them being limited to a specific functional form. Furthermore, considering the seismic fragility analysis is a significant procedure in the seismic probabilistic risk assessment of structures, the seismic vulnerability results obtained by the dynamic reliability approach are combined with the results of probabilistic seismic hazard and seismic loss analysis to present and address the PDEM-based seismic probabilistic risk assessment framework by a simulated case study of an earth dam.

Dynamic modeling and structural reliability of an aeroelastic launch vehicle

  • Pourtakdoust, Seid H.;Khodabaksh, A.H.
    • Advances in aircraft and spacecraft science
    • /
    • 제9권3호
    • /
    • pp.263-278
    • /
    • 2022
  • The time-varying structural reliability of an aeroelastic launch vehicle subjected to stochastic parameters is investigated. The launch vehicle structure is under the combined action of several stochastic loads that include aerodynamics, thrust as well as internal combustion pressure. The launch vehicle's main body structural flexibility is modeled via the normal mode shapes of a free-free Euler beam, where the aerodynamic loadings on the vehicle are due to force on each incremental section of the vehicle. The rigid and elastic coupled nonlinear equations of motion are derived following the Lagrangian approach that results in a complete aeroelastic simulation for the prediction of the instantaneous launch vehicle rigid-body motion as well as the body elastic deformations. Reliability analysis has been performed based on two distinct limit state functions, defined as the maximum launch vehicle tip elastic deformation and also the maximum allowable stress occurring along the launch vehicle total length. In this fashion, the time-dependent reliability problem can be converted into an equivalent time-invariant reliability problem. Subsequently, the first-order reliability method, as well as the Monte Carlo simulation schemes, are employed to determine and verify the aeroelastic launch vehicle dynamic failure probability for a given flight time.

Time-variant structural fuzzy reliability analysis under stochastic loads applied several times

  • Fang, Yongfeng;Xiong, Jianbin;Tee, Kong Fah
    • Structural Engineering and Mechanics
    • /
    • 제55권3호
    • /
    • pp.525-534
    • /
    • 2015
  • A new structural dynamic fuzzy reliability analysis under stochastic loads which are applied several times is proposed in this paper. The fuzzy reliability prediction models based on time responses with and without strength degeneration are established using the stress-strength interference theory. The random loads are applied several times and fuzzy structural strength is analyzed. The efficiency of the proposed method is demonstrated numerically through an example. The results have shown that the proposed method is practicable, feasible and gives a reasonably accurate prediction. The analysis shows that the probabilistic reliability is a special case of fuzzy reliability and fuzzy reliability of structural strength without degeneration is also a special case of fuzzy reliability with structural strength degeneration.

PHC 매입말뚝의 동재하시험과 정재하시험의 지지력 비교·분석 연구 (A Comparative Study on the Bearing Capacity of Dynamic Load Test and Static Load Test of PHC Bored Pile)

  • 박종배
    • 한국지반환경공학회 논문집
    • /
    • 제18권9호
    • /
    • pp.19-31
    • /
    • 2017
  • 미국 사례의 경우 항타말뚝과 현장타설말뚝은 동재하시험과 정재하시험 지지력 상관관계 분석에서 좋은 상관관계를 나타내었다. 하지만, 국내에서는 해외에서 많이 사용하지 않는 매입말뚝으로 주로 시공을 하고 있으며, 매입말뚝의 동재하시험 신뢰성에 대해 의문이 많아 동재하시험의 신뢰도를 확인하고자 하였다. 본 연구에서는 LH 현장(천안, 인천, 의정부)에서 PHC 매입말뚝에 대하여 재하시험을 실시하였으며, 동재하시험(EOID 7회, Restrike 7회)과 정재하시험(7회) 지지력을 비교 분석하였다. 그 결과 재항타동재하지지력 및 정재하지지력 평균 값 비교 시 정재하지지력 평균 값이 약 27% 높게 나타났다(신뢰도 : 0.73, 변동계수 : 0.3). 재항타지지력(Davisson 판정 값) 및 정재하지지력(Davisson 판정 값) 평균 값 비교 시 정재하지지력(Davisson 판정 값) 평균 값이 약 27% 높게 나타났다(신뢰도 : 0.73, 변동계수 : 0.2). 동재하시험과 정재하시험의 차이를 줄이고자 본 연구에서는 수정동재하지지력(EOID의 극한선단지지력+Restrike의 극한주면마찰력)을 제시하였으며, 수정동재하지지력과 정재하지지력을 비교했을 때는 그 차이가 9%로 줄어들었다(신뢰도 : 0.91, 변동계수 : 0.2). 또한 변동계수가 0.2로 줄어들어 일관성이 증가한 것으로 나타났다.

Inter-rater Reliability of Cervical Proprioception, Dynamic Balance and Dorsiflexion Range of Motion Ising STARmat®

  • Park, Ji-Won;Park, Seol
    • The Journal of Korean Physical Therapy
    • /
    • 제32권2호
    • /
    • pp.88-93
    • /
    • 2020
  • Purpose: This study examined the inter-rater reliability of cervical proprioception, dynamic balance ability, and ankle dorsiflexion range of motion using STARmat®, which is a practical clinical tool that can provide practitioners and patients with quantitative and qualitative results. Methods: Thirty healthy young subjects were enrolled in this study, and two well-trained physical therapists participated as a tester. Two testers measured the cervical joint position error at the starting position after neck flexion, extension, side bending, and rotation; three dynamic balance tests, including anterior excursion, anterior reaching with single leg balance, and posterior diagonal excursion; and ankle dorsiflexion range of motion using STARmat®. The intra-class correlation coefficient (ICC) was used to determine the inter-rater reliability of the tests. Results: The inter-rater reliability for the cervical proprioception ranged from moderate to good (0.66 to 0.83), particularly for flexion (0.82), extension (0.70), right side bending (0.73), left side bending (0.71), right rotation (0.83), and left rotation (0.66). For the dynamic balance, the inter-rater reliability ranged from good to excellent (0.87 to 0.91), particularly for anterior excursion (0.86), posterior diagonal excursion (0.87 to 0.89), and anterior reaching with a single leg balance (0.90 to 0.91). In addition, for the ankle dorsiflexion range of motion, the ICC for the inter-rater reliability ranged from 0.95 to 0.96. Conclusion: STARmat® is a reliable tool for measuring cervical proprioception, dynamic balance tests, and ankle dorsiflexion range of motion in healthy young adults.

A dynamic human reliability assessment approach for manned submersibles using PMV-CREAM

  • Zhang, Shuai;He, Weiping;Chen, Dengkai;Chu, Jianjie;Fan, Hao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권2호
    • /
    • pp.782-795
    • /
    • 2019
  • Safety is always acritical focus of exploration of ocean resources, and it is well recognized that human factor is one of the major causes of accidents and breakdowns. Our research developed a dynamic human reliability assessment approach, Predicted Mean Vote-Cognitive Reliability and Error Analysis Method (PMV-CREAM), that is applicable to monitoring the cognitive reliability of oceanauts during deep-sea missions. Taking into account the difficult and variable operating environment of manned submersibles, this paper analyzed the cognitive actions of oceanauts during the various procedures required by deep-sea missions, and calculated the PMV index using human factors and dynamic environmental data. The Cognitive Failure Probabilities (CFP) were calculated using the extended CREAM approach. Finally, the CFP were corrected using the PMV index. This PMV-CREAM hybrid model can be utilized to avoid human error in deep-sea research, thereby preventing injury and loss of life during undersea work. This paper verified the method with "Jiaolong" manned submersible 7,000 m dive test. The"Jiaolong" oceanauts CR(Corrected CFP) is dynamic from 3.0615E-3 to 4.2948E-3, the CR caused by the environment is 1.2333E-3. The result shown the PMV-CREAM method could describe the dynamic human reliability of manned submersible caused by thermal environment.