• 제목/요약/키워드: dynamic recurrent neural network

검색결과 82건 처리시간 0.023초

순환 신경망을 이용한 보행단계 분류기 (A Gait Phase Classifier using a Recurrent Neural Network)

  • 허원호;김은태;박현섭;정준영
    • 제어로봇시스템학회논문지
    • /
    • 제21권6호
    • /
    • pp.518-523
    • /
    • 2015
  • This paper proposes a gait phase classifier using a Recurrent Neural Network (RNN). Walking is a type of dynamic system, and as such it seems that the classifier made by using a general feed forward neural network structure is not appropriate. It is known that an RNN is suitable to model a dynamic system. Because the proposed RNN is simple, we use a back propagation algorithm to train the weights of the network. The input data of the RNN is the lower body's joint angles and angular velocities which are acquired by using the lower limb exoskeleton robot, ROBIN-H1. The classifier categorizes a gait cycle as two phases, swing and stance. In the experiment for performance verification, we compared the proposed method and general feed forward neural network based method and showed that the proposed method is superior.

순환 신경망 모델을 이용한 한국어 음소의 음성인식에 대한 연구 (A Study on the Speech Recognition of Korean Phonemes Using Recurrent Neural Network Models)

  • 김기석;황희영
    • 대한전기학회논문지
    • /
    • 제40권8호
    • /
    • pp.782-791
    • /
    • 1991
  • In the fields of pattern recognition such as speech recognition, several new techniques using Artifical Neural network Models have been proposed and implemented. In particular, the Multilayer Perception Model has been shown to be effective in static speech pattern recognition. But speech has dynamic or temporal characteristics and the most important point in implementing speech recognition systems using Artificial Neural Network Models for continuous speech is the learning of dynamic characteristics and the distributed cues and contextual effects that result from temporal characteristics. But Recurrent Multilayer Perceptron Model is known to be able to learn sequence of pattern. In this paper, the results of applying the Recurrent Model which has possibilities of learning tedmporal characteristics of speech to phoneme recognition is presented. The test data consist of 144 Vowel+ Consonant + Vowel speech chains made up of 4 Korean monothongs and 9 Korean plosive consonants. The input parameters of Artificial Neural Network model used are the FFT coefficients, residual error and zero crossing rates. The Baseline model showed a recognition rate of 91% for volwels and 71% for plosive consonants of one male speaker. We obtained better recognition rates from various other experiments compared to the existing multilayer perceptron model, thus showed the recurrent model to be better suited to speech recognition. And the possibility of using Recurrent Models for speech recognition was experimented by changing the configuration of this baseline model.

회귀예측 신경모델과 카오스 신경회로망을 결합한 고립 숫자음 인식 (Isolated Digit Recognition Combined with Recurrent Neural Prediction Models and Chaotic Neural Networks)

  • 김석현;여지환
    • 한국지능시스템학회논문지
    • /
    • 제8권6호
    • /
    • pp.129-135
    • /
    • 1998
  • 본 논문은 서러 다른 접근방식을 사용하는 카오스 회귀 신경예측모델과 다층 신경회로망이 결합하여 고립음의 인식률을 높이고자 하였다. 전반적으로 다층신경회로망은 MLP와 결합한 인식률은 1.2%에서 2.5% 이상이 개선 되었다. 이는 서로 인식하는 방법이 다르기 때문에 서로 상호 보완되고, 카오스의 다이내믹 성질이 인식률을 개선시켰음을 실험으로 밝혔다. MLP와 결합한 인식률은 카오스 다층신경망일 때가 가장 좋았다. 그러나 학습시 알고리즘이 단순하고, 신뢰도 면에서는 오히려 카오스 단층 신경망이 인식률은 0.5%정도 떨어지지만 더욱 좋다고 생각된다. 주로 MLP는 숫자음 “일”과 “오”에서 우수한 성적을 나타내었고, 카오스 예측 신경망은 숫자음 “영”, “삼”, “칠”에서 우수하였다.

  • PDF

Application of a Neural Network to Dynamic Draft Model

  • Choi, Yeong Soo;Lee, Kyu Seung;Park, Won Yeop
    • Agricultural and Biosystems Engineering
    • /
    • 제1권2호
    • /
    • pp.67-72
    • /
    • 2000
  • A dynamic draft model is necessary to analyze mechanics of tillage and to design optimal tillage tools. In order to deal with draft dynamics, a neural network paradigm was applied to develop dynamic draft models. For the development of the models, three kinds of tillage tools were used to measure drafts in the soil bin and a time lagged recurrent neural network was developed. The neural network had a structure to predict dynamic draft, having a function of one-step-ahead prediction. A procedure for network prediction model identification was established. The results show promising modeling of the dynamic drafts with developed neural network.

  • PDF

Stable Predictive Control of Chaotic Systems Using Self-Recurrent Wavelet Neural Network

  • Yoo Sung Jin;Park Jin Bae;Choi Yoon Ho
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권1호
    • /
    • pp.43-55
    • /
    • 2005
  • In this paper, a predictive control method using self-recurrent wavelet neural network (SRWNN) is proposed for chaotic systems. Since the SRWNN has a self-recurrent mother wavelet layer, it can well attract the complex nonlinear system though the SRWNN has less mother wavelet nodes than the wavelet neural network (WNN). Thus, the SRWNN is used as a model predictor for predicting the dynamic property of chaotic systems. The gradient descent method with the adaptive learning rates is applied to train the parameters of the SRWNN based predictor and controller. The adaptive learning rates are derived from the discrete Lyapunov stability theorem, which are used to guarantee the convergence of the predictive controller. Finally, the chaotic systems are provided to demonstrate the effectiveness of the proposed control strategy.

합성곱 순환 신경망 구조를 이용한 지진 이벤트 분류 기법 (Earthquake events classification using convolutional recurrent neural network)

  • 구본화;김관태;장수;고한석
    • 한국음향학회지
    • /
    • 제39권6호
    • /
    • pp.592-599
    • /
    • 2020
  • 본 논문은 다양한 지진 이벤트 분류를 위해 지진 데이터의 정적인 특성과 동적인 특성을 동시에 반영할 수 있는 합성곱 순환 신경망(Convolutional Recurrent Neural Net, CRNN) 구조를 제안한다. 중규모 지진뿐만 아니라 미소 지진, 인공 지진을 포함한 지진 이벤트 분류 문제를 해결하려면 효과적인 특징 추출 및 분류 방법이 필요하다. 본 논문에서는 먼저 주의 기반 합성곱 레이어를 통해 지진 데이터의 정적 특성을 추출 하게 된다. 추출된 특징은 다중 입력 단일 출력 장단기메모리(Long Short-Term Memory, LSTM) 네트워크 구조에 순차적으로 입력되어 다양한 지진 이벤트 분류를 위한 동적 특성을 추출하게 되며 완전 연결 레이어와 소프트맥스 함수를 통해 지진 이벤트 분류를 수행한다. 국내외 지진을 이용한 모의 실험 결과 제안된 모델은 다양한 지진 이벤트 분류에 효과적인 모습을 보여 주었다.

지역 및 광역 리커런트 신경망을 이용한 비선형 적응예측 (Nonlinear Adaptive Prediction using Locally and Globally Recurrent Neural Networks)

  • 최한고
    • 대한전자공학회논문지SP
    • /
    • 제40권1호
    • /
    • pp.139-147
    • /
    • 2003
  • 동적 신경망은 신호예측과 같이 temporal 신호처리가 요구되는 여러 분야에 적용되어 왔다. 본 논문에서는 다층 리커런트 신경망(RNN)의 동특성을 향상시키기 위해 지역 궤환 신경망(LRNN)과 광역 궤환 신경망(CRNN)으로 구성된 합성 신경망을 제안하고, 적응필터로 제안된 신경망을 사용하여 비선형 적응예측을 다루고 있다. 합성 신경망은 LRNN으로 IIR-MLP와 CRNN으로 Elman RNN 신경망으로 구성되어 있다. 제안된 신경망은 비선형 신호예측을 통해 평가되었으며, 예측 성능의 상대적인 비교를 위해 Elman RNN과 IIR-MLP 신경망과 상호 비교하였다. 실험결과에 의하면 합성 신경망은 수렴속도과 정확도에서 더 우수한 성능을 보여줌으로써, 제안된 신경망이 기존의 다층 리커런트 신경망보다 비정적 신호에 대한 비선형 예측에 더 효과적인 예측모델임을 확인하였다.

MODELLING THE DYNAMICS OF THE LEAD BISMUTH EUTECTIC EXPERIMENTAL ACCELERATOR DRIVEN SYSTEM BY AN INFINITE IMPULSE RESPONSE LOCALLY RECURRENT NEURAL NETWORK

  • Zio, Enrico;Pedroni, Nicola;Broggi, Matteo;Golea, Lucia Roxana
    • Nuclear Engineering and Technology
    • /
    • 제41권10호
    • /
    • pp.1293-1306
    • /
    • 2009
  • In this paper, an infinite impulse response locally recurrent neural network (IIR-LRNN) is employed for modelling the dynamics of the Lead Bismuth Eutectic eXperimental Accelerator Driven System (LBE-XADS). The network is trained by recursive back-propagation (RBP) and its ability in estimating transients is tested under various conditions. The results demonstrate the robustness of the locally recurrent scheme in the reconstruction of complex nonlinear dynamic relationships.

Hybrid 리커런트 신경망을 이용한 시스템 식별 (System Identification Using Hybrid Recurrent Neural Networks)

  • 최한고;고일환;김종인
    • 융합신호처리학회논문지
    • /
    • 제6권1호
    • /
    • pp.45-52
    • /
    • 2005
  • 동적 신경망은 temporal 신호처리가 요구되는 여러 분야에 사용되어 왔다. 본 논문에서는 다층 리커런트 신경망(RNN)의 동특성을 더 향상시키기 위해 지역 궤환 신경망(LRNN)과 광역 궤환 신경망(GRNN)으로 구성된 합성 신경망을 사용하여 시스템 식별을 다루고 있다. 합성 신경망의 구조는 LRNN으로 IIR-MLP를, GRNN으로 Elman RNN을 결합하고 있다. 합성신경망은 선형과 비선형 시스템 식별을 통해 평가되었으며 상대적인 성능평가를 위해 Elman RNN과 IIR-MLP 신경망과 비교하고 있다. 시뮬레이션 결과에 의하면 합성 신경망은 학습속도와 정확도에서 더 우수하게 동작하였으며, 이러한 사실은 비선형 시스템 식별에 있어서 합성 신경망이 기존의 다층 리커런트 신경망보다 더 효과적인 신경망이 될 수 있음을 보여주었다.

  • PDF

자기회귀 웨이블릿 신경 회로망을 이용한 TCP 네트워크 혼잡제어 (Congestion Control of TCP Network Using a Self-Recurrent Wavelet Neural Network)

  • 김재만;박진배;최윤호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.325-327
    • /
    • 2005
  • In this paper, we propose the design of active queue management (AQM) control system using the self-recurrent wavelet neural network (SRWNN). By regulating the queue length close to reference value, AQM can control the congestions in TCP network. The SRWNN is designed to perform as a feedback controller for TCP dynamics. The parameters of network are tunes to minimize the difference between the queue length of TCP dynamic model and the output of SRWNN using gradient-descent method. We evaluate the performances of the proposed AQM approach through computer simulations.

  • PDF