• Title/Summary/Keyword: dynamic range (D.R.)

Search Result 117, Processing Time 0.023 seconds

Realtime Wideband SW DDC Using High-Speed Parallel Processing (고속 병렬처리 기법을 활용한 실시간 광대역 소프트웨어 DDC)

  • Lee, Hyeon-Hwi;Lee, Kwang-Yong;Yun, Sangbom;Park, Yeongil;Kim, Seongyo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.11
    • /
    • pp.1135-1141
    • /
    • 2014
  • Performing wideband DDC while quantizing signal over a wide dynamic range and high speed sampling rate have primarily been implemented in a hardware such as, FPGA or ASIC because of time-consuming job. Real-time wideband DDC SW, even though signal environment changes, adapt to signal environment flexibly and can be reused. In addition, it has a lower price than the hardware implementation. In this paper, we study the system design that can be stored in real time designing a high-speed parallel processing architecture for SW-based wideband DDC. Finally, applying a Ping-Pong Buffering mechanism for receiving a signal in real time and CUDA for a high-speed signal processing, we verify wideband DDC design procedure that meets the signal processing.

Transmission Error Influences by Initial Tension of Timing Chain System (타이밍 체인 시스템의 초기 장력이 전달 오차에 미치는 영향)

  • Park, Yongsik;Jung, Taeksu;Hong, Yunhwa;Kim, Youngjin;Park, Youngkyun;Lee, Jungjin;Cho, Chongdu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.2
    • /
    • pp.133-139
    • /
    • 2017
  • The timing chain system, which is a typical power transmission technology applied to a vehicle, has been widely used by the automotive industry because it is normally designed to last a car's lifetime. However, the timing chain system may cause some problems due to the shape of the chains and the polygonal behavior on contact between the chain and the sprocket. In addition, noise and vibration caused by transmission error are the most typical problems encountered by major automotive manufacturers and they are considered as the main source of customer complaint. The initial tension of the chain-sprocket system is thought to be the main cause of transmission error, and it is regarded as the source of engine vibration and noise. The initial tension of the chain system should be controlled carefully since a low initial tension can cause twisting, which may lead to a system malfunction, while a high initial tension can reduce the service life due to a worn down contact surface. In this paper, the kinematic analysis model is generated with various initial tensions, which are controlled by changing the shape of the fixed guide with the largest contact surface with chain. The results showed that the transmission error was minimized on a particular range of initial tension, and the tendency showed that the error changed with a higher sensitivity at a lower initial tension.

Three-Point Bending Fatigue Properties of Austenitic 304 Stainless Steel Sheets for Membrane (Membrane용 오스테나이트계 304 스테인리스강 판재의 3점 굽힘피로 특성)

  • Lee Tae-Ho;Kim Sung-Joon;Kim Hyoung-Sik;Kim Cheol-Man;Hong Seong-Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.3 no.3 s.8
    • /
    • pp.1-8
    • /
    • 1999
  • Three-point bending fatigue properties of austenitic 304 stainless steel sheets were investigated at room temperature and LNG temperature($-162^{\circ}C$) in the strain range from 0.43 to $1.7\%$. The fatigue properties at $-162^{\circ}C$ were superior to those at room temperature due to the higher volume fractions of deformation-induced martensite. The cyclic hardening behavior owing to the deformation- induced martensite transformation was detected in both specimens. In room temperature testing, the mean load amplitude increased steadily with cycles, meaning that cumulative plastic incubation strain was required for martensite transformation. On the contrary, in $-162^{\circ}C$ tested specimen, the mean load amplitude increased rapidly within a few cycles due to the rapid transformation of martensite, and slightly decreased after the maximum is reached probably due to dynamic recovery.

  • PDF

Measurement Method of Complex Dynamic Viscoelastic Material Properties (점탄성 재료의 복소수 동특성 측정방법)

  • Lee, In-Won;An, Nam-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.5
    • /
    • pp.489-495
    • /
    • 2009
  • A novel technique to measuret of viscoelastic properties of polymers is proposed to investigate complex Poisson's ratio as a function of frequency. The forced vibration responses for the samples under the normal and the shear deformation are to be measured with varying load masses. The measured data were used to obtain the viscoelastic properties of the material based on an accurate 2D numerical deformation model of the sample. The 2D model enabled us to exclude data correction by the empirical form factor used in 1D model. Comprehensive measurements of viscoelastic properties of two slightly varied silicone RTV rubber ($Silastic^{(R)}$ S2) compositions were performed. Standard composition (90% PDMS polymer + 10% catalyst) and modified composition (92.5% polymer + 7.5% catalyst) were tested in temperature range from $30^{\circ}C$ to $70^{\circ}C$. Shear modulus, modulus of elasticity, loss factor, and both the real and the imaginary parts of the Poisson's ratio were determined for frequencies from 50 to 400Hz in the linear deformation regime (at relative deformations $10^{-4}{\sim}10^{-3}$).

Dynamic Test of Structural Models Using 4m $\times$ 4m Shaking Table (4m$\times$4m 진동대를 이용한 구조모델의 동적실험)

  • 이한선
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.207-214
    • /
    • 1997
  • The objective of this study is to review the current stare of earthquake simulation techniques using the shaking table and check the reliability. One degree-of-freedom(d.o.f.)and three d.o.f. aluminium shear models were used and 4m$\times$4m 6 d.o.f. shaking table was excitated in one horizontal direction to simulate 1940 El centro earthquake accelerogram (NS component). When the acceleration history of shaking table is compared to the desired one, it can be found that the overall histories are very similar, but that the lower frequency range (0~2 Hz) of the actual excitation has generally lower amplitude than that of the desired in fourier transform amplitude. Free vibration and white noise tests have shown almost the same values for natural frequencies, but shown quite different values for damping ratios, that is, 1.37% in case of r\free vibration test vs 14.76% in case of white noise test. The time histories of story shear versus story drift show the globally linear elastic behaviors. But the elliptical shape of the histories with one of the axis being the stiffness of the story implies the effect of viscous damping.

  • PDF

A Possible Test Method Proposed for Resilient Modulus (MR) and Analysis of Correlation between Resilient Modulus and Shear Modulus of Track Subgrade Soil (흙노반재료의 회복탄성계수(MR) 결정을 위한 반복삼축압축시험법 제시 및 변형계수 상관성 분석)

  • Park, Jae Beom;Choi, Chan Yong;Lim, Sang Jin;Lim, Yu Jin
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.1
    • /
    • pp.85-98
    • /
    • 2017
  • In general, under the repetitive dynamic load generated by rail cars running on the track, subgrade soil experiences changes of stress conditions such as deviatoric stress (${\sigma}_d$) and bulk stress (${\theta}$). Due to the repetitive change of deviatoric stress (${\sigma}_d$) with number of loadings, the resilient modulus ($M_R$) can be obtained by using the measured resilient strain (${\varepsilon}_r$) after a sufficient number of loadings. At present, no plausible and unified test method has been proposed to obtain the resilient modulus of railway track subgrade soil. In this study, a possible test method for obtaining the resilient modulus ($M_R$) of railway track subgrade soil is proposed; this test, by utilizing repetitive triaxial compression testing, can consider all the important parameters, such as the confining stress, deviatoric stress, and number of loadings. By adapting and using the proposed test method to obtain $M_R$, $M_R$ values for compacted track subgrade soil can be successfully determined using soil obtained in three field sites of railway track construction with changing water content range from OMC. In addition, shear modulus (G) ~ shear strain (${\gamma}$) relation data were also obtained using a mid-size RC test. A correlation analysis was performed using the obtained G and $M_R$ values while considering the strain levels and modes of strain direction.

Hot Deformation Behavior of AISI 4340 using Constitutive Model and Processing Map (구성 모델과 공정 지도를 이용한 AISI 4340강의 고온 변형 거동)

  • Kim, Keunhak;Jung, Minsu;Lee, Seok-Jae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.30 no.5
    • /
    • pp.187-196
    • /
    • 2017
  • High temperature flow behaviors of AISI 4340 steel were investigated using isothermal compression tests under the temperature range from 850 to $1100^{\circ}C$ and a strain rate from 0.01 to $10s^{-1}$. The flow stress decreased with increasing compression temperature and decreasing strain rate. The dynamic softening related to the dynamic recrystallization was observed during hot deformation. The constitutive model based on Arrheniustyped equation with the Zener-Hollomon parameter was used to simulate the hot deformation behavior of AISI 4340 steel. The modification of the Zener-Hollomon parameter and lnA parameter resulted in the improvement of the calculation accuracy of the proposed constitutive model compared with the experimental flow curves. In addition, the process map of AISI 4340 steel was proposed. The instable process condition for hot deformation was predicted and its reliability was verified with the experimental observation.

An Experimental Study on the Squeal Noise Generation due to Dynamic Instability of Brake Pad (브레이크 패드의 동적 불안정성에 따른 스퀼 소음 발생 원인의 실험적 연구)

  • Cho, Sangwoon;Lim, Byoungduk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.5
    • /
    • pp.520-526
    • /
    • 2016
  • Squeal noise is a typical brake noise that is annoying to both passengers and pedestrians. Its frequency range is fairly wide from 1 kHz to 18 kHz, which can be distressful to people. The brake squeal noise occurs due to various mechanisms, such as the mode coupling of the brake system, self-excited vibration, unstable wear, and others. In this study, several parameters involved in the generation of a squeal noise are investigated experimentally by using a brake noise dynamometer. The speed, caliper pressure, torque, and friction coefficient are measured as functions of time on the dynamometer. The contact pressure and temperature distributions of the disc and the pad are also measured by using a thermal imaging camera and a pressure mapping system. As a result of the simultaneous measurement of the friction coefficient and squeal amplitude as functions of the velocity, it is found that the onset of the squeal may be predicted from the ${\mu}-v$ curve. It is also found that a non-uniform contact pressure causes instability and, in turn, a squeal. Based on the analysis results, design modifications of the pad are suggested for improved noise characteristics.

Effect of fatigue crack propagation on natural frequencies of system in AISI 4140 Steel

  • Bilge, Habibullah;Doruk, Emre;Findik, Fehim;Pakdil, Murat
    • Steel and Composite Structures
    • /
    • v.32 no.3
    • /
    • pp.305-312
    • /
    • 2019
  • In this study, we investigated the effect of fatigue crack propagation of the beams which have a vital importance in engineering applications, on the natural frequency of the system. Beams which have a wide range of applications, are used as fundamental structural elements in engineering structures. Therefore, early detection of any damages in these structures is of vital importance for the prevention of possible destructive damages. One of the widely used methods of early detection of damages is the vibration analysis of the structure. Hence, it is of vital importance to detect and monitor any changes in the natural frequencies of the structure. From this standpoint, in this study we experimentally investigated the effect of fatigue crack propagation on beams produced from 4140 steel, of the natural frequency of the beam. A crack was opened on the $8{\times}16{\times}500mm$ beam using a 3 mm long and 0.25 mm wide wire erosion. The beam, then, underwent 3 point bending tests at 10 Hz with a dynamic fatigue device and its natural frequencies were measured in scheduled intervals and any changes taking place on the natural frequencies of the beam were measured. This data allowed us to identify and measure the crack occurring on the beam subjected to dynamic loading, during the propagation phase. This method produced experimental data. The experimental data showed that the natural frequency of the beam decreased with the propagation of the fatigue crack on the beam.

Analysis on the current collection characteristics of the KHST in high speed range over 300km/h (300km/h이상 고속대역에서 한국형 고속열차의 집전특성 분석)

  • Mok Jin-Yong;Park Choon-Soo;Kim Ki-Hwan;Kim Young-Guk
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.356-361
    • /
    • 2005
  • The Korean High Speed Train(KHST) had been developed and evaluating on the Kyoung-Bu High Speed Line by through 'G7-R&D project'. In order to evaluate the function and characteristics of high speed train system, various experimental conditions have been considered and conducted. In this paper, current collection characteristics of KHST between pantograph and catenary system and dynamic behaviors are measured and analysed over 300 to 350km/h in running speed of KHST. A measuring system which was developed and installed on the Korean High Speed Train for the performance and mechanical characteristics of the KHST pantograph is used for this trial running test and we proofed that KHST has a remarkable and stable current collection characteristics as it had been designed.

  • PDF