• Title/Summary/Keyword: dynamic properties

Search Result 3,313, Processing Time 0.031 seconds

Property improvement of natural fiber-reinforced green composites by water treatment

  • Cho, Dong-Hwan;Seo, Jeong-Min;Lee, Hyun-Seok;Cho, Chae-Wook;Han, Seong-Ok;Park, Won-Ho
    • Advanced Composite Materials
    • /
    • v.16 no.4
    • /
    • pp.299-314
    • /
    • 2007
  • In the present study, natural fibers (jute, kenaf and henequen) reinforced thermoplastic (poly(lactic acid) and polypropylene) and thermosetting (unsaturated polyester) matrix composites were well fabricated by a compression molding technique using all chopped natural fibers of about 10 mm long, respectively. Prior to green composite fabrication, natural fiber bundles were surface-treated with tap water by static soaking and dynamic ultrasonication methods, respectively. The interfacial shear strength, flexural properties, and dynamic mechanical properties of each green composite system were investigated by means of single fiber microbonding test, 3-point flexural test, and dynamic mechanical analysis, respectively. The result indicated that the properties of the polymeric resins were significantly improved by incorporating the natural fibers into the resin matrix and also the properties of untreated green composites were further improved by the water treatment done to the natural fibers used. Also, the property improvement of natural fiber-reinforced green composites strongly depended on the treatment method. The interfacial and mechanical results agreed with each other.

Comparison of Dynamic Balance Ability and Leg Muscle Properties during Bulgarian Split Squat Exercises using the Visual Block and Unstable Support Plane (시각 차단과 불안정한 지지면을 이용한 불가리안 스플릿 스쿼트 운동 시 동적 균형 능력과 근속성의 비교)

  • Jin-hyun Yang;Gyo-hyeon Lee;Kyung-ho Park;Soo-kyoung Park
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.29 no.1
    • /
    • pp.41-52
    • /
    • 2023
  • Background: Bulgarian split squat (BSS) is beneficial to improve dynamic balance ability and muscle activity of lower extremities, however its effects have not been fully investigated. Therefore, this study aimed to compare changes in dynamic balance ability and muscle properties according to various modifications of BSS exercises. Methods: Thirty healthy male volunteers participated in this study, and they were randomly divided into three different groups. The subjects performed the BSS exercise either on a stable surface with the eyes opened (n=10) or eyes closed (n=10), and on an unstable support plane with eyes opened (n=10) conditions, respectively. Dynamic balance ability was measured via Biodex balance system under the eyes-opened and closed conditions. Additionally, muscle properties of the rectus femoris (RF), vastus medialis (VM) and vastus lateralis (VL) were evaluated. Results: Dynamic balance ability did not show the significant differences among the groups that performed the BSS exercises. However, in the Unstable group, there were significant differences in the overall stability index and anterior posterior stability index under the eyes-closed condition between pre-exercise and post-exercise. In comparison of muscle properties according to the groups, RF muscle showed a significant difference in amount of change of elasticity (p=.038). Additionally, there were significant changes in post measurements of VM muscle tone (p=.016), stiffness (p=.012) and elasticity (p=.002). VL muscle, however had no significant differences in muscle properties. Conclusion: These results indicate that BSS exercises could induce the alteration of RF and VM muscle properties, in particular VM muscle which is susceptible to weakness. Thus, BSS could be applied in various ways as an effective rehabilitation exercise.

  • PDF

An Experimental Study on Dynamic Deformation Properties of Rock Materials using Large Triaxial Testing Apparatus (대형진동삼축시험기를 이용한 암석재료의 동적변형특성에 관한 실험적 연구)

  • 신동훈
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.299-308
    • /
    • 2003
  • In order to investigate the dynamic deformation properties of rockfill materials in small strain level, cyclic triaxial tests were conducted using the large cyclic triaxial testing apparatus, which was developed by Water Resources Research Institute of KOWACO in 2001. Two types of rockfill materials consisting of granite and shale-sandstone were tested in this study. The test results show that G/G$\_$max/ of granite specimen decreases more than that of shale-sandstone with the increase of shear strain and the increase ratio in the maximum shear modulus G$\_$max/ of granite is bigger than the ratio of shale-sandstone.

  • PDF

Evaluation on Cement Composites of Dynamic Tensile Fracture Properties by Fiber Type (섬유 종류에 따른 시멘트복합체의 동적 인장파괴특성 평가)

  • Han, Sang-Hyu;Kim, Gyu-Yong;Cheo, Gyeong-Cheol;Kim, Hong-Seop;Kim, Jung-Hyun;Lee, Sang-Gyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.118-119
    • /
    • 2015
  • Fracture behavior of concrete subjected to dynamic loading is affected by loading rate and strain rate. In this study, compressive strength properties according to strain rate of fiber reinforced cement composites by rapid loading with 500Ton rapid loading test machine was analyzed.

  • PDF

Viscoelastic Properties of Fresh Cement Paste to Study the Flow Behavior

  • Choi, Myoungsung;Park, Kyoungsoo;Oh, Taekeun
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.sup3
    • /
    • pp.65-74
    • /
    • 2016
  • During concrete pumping, the migration and redistribution of particles occur in a pipe and the lubrication layer that forms between the bulk concrete and the pipe wall is the governing factor determining the flow behavior. In order to identify flow behavior of pumping, in this study, the viscoelastic properties related to the microstructural behavior of a flocculated suspension were examined by using dynamic oscillatory measurements. Cement paste is assumed to be a constituent material of the lubrication layer and ten cases of mixing design are employed by changing the proportions of mineral admixtures. The relationship between the yield stress obtained from the steady shear test and the dynamic modulus resulted from the oscillatory shear measurement was derived and the implications of the correlation are discussed. Moreover, based on the investigation of the viscoelastic properties with oscillatory measurements, the initial behavior of pumped concrete was analyzed systematically.

Study on sensitivity of modal parameters for suspension bridges

  • Liu, Chunhua;Wang, Ton-Lo;Qin, Quan
    • Structural Engineering and Mechanics
    • /
    • v.8 no.5
    • /
    • pp.453-464
    • /
    • 1999
  • Safety monitoring systems of structures generally resort to detecting possible changes of dynamic system parameters. Sensitivity analysis of these dynamic system parameters may implement these techniques. Conventional structural eigenvalue problems are discussed in the scope of those systems with deterministic parameters. Large and flexible structures, such as suspension bridges, actually possess stochastic material properties and these random properties unavoidably affect the dynamic system parameters. The sensitivity matrix of structural modal parameters to basic design variables has been established in this paper. Moreover, second order statistics of natural frequencies due to the randomness of material properties have been discussed. It is concluded from numerical analysis of a modem suspension bridge that although the second order statistics of frequencies are small relatively to the change of basic design variables, such as density of mass and modulus of elasticity, the sensitivities of modal parameters to these variables at different locations change in magnitude.

Effects of Gradation on Dynamic properties of Sands (모래의 입도가 동적 특성에 미치는 영향)

  • 송정락;김수일
    • Geotechnical Engineering
    • /
    • v.3 no.2
    • /
    • pp.7-16
    • /
    • 1987
  • The dynamic properties of soils are affected by parameters like, gradation characteristics, void ratio, confining pressure, etc. . This study mainly investigated experimentally the effect of gradation on the dynamic properties of sands with the effect of void ratio and confining pressure. Test results showed that shear modulus/damping ratio was increased/decreased with the decrease of void ratio and with the increase of confining pressure. When the fine content increased, shear modulus/damping ratio was decreased/increased. This study explained this phenomenon by the concept of the "effective number of contacts" and the "dead space".ot;dead space".uot;.

  • PDF

Numerical calculation of the dynamic properties of Weis-Fogh type ship's propulsion mechanism (Weis-Fogh형 선박 추진기구의 역학적 특성계산)

  • No, Gi-Deok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.11
    • /
    • pp.1518-1526
    • /
    • 1997
  • The dynamic properties of a ship's propulsion mechanism of Weis-Fogh type are studied by the discrete vortex method. The wing in the channel is approximated by a finite number of bound vortices and free vortices representing the separated flow are introduced from the trailing edge of the wing. The time histories of the thrust, the drag, and the moment acting on the wing are calculated, including the unsteady force due to the change of strength of the bound vortices. These calculated results show a similar tendency to the experimental ones qualitatively and the dynamic properties of this propulsion mechanism are numerically clarified.

Dynamic Analysis of Multi-body Systems Considering Probabilistic Properties

  • Choi, Dong-Hwan;Lee, Se-Jeong;Yoo, Hong-Hee
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.350-356
    • /
    • 2005
  • A method of dynamic analysis of mechanical systems considering probabilistic properties is proposed in this paper. Probabilistic properties that result from manufacturing tolerances can be represented by means and standard deviations (or variances). The probabilistic characteristics of dynamic responses of constrained multi-body systems are obtained by two ways : the proposed analytical approach and the Monte Carlo simulation. The formerpaper, necessitates sensitivity information to calculate the standard deviations. In this a direct differentiation method is employed to find the sensitivities of constrained multi-body systems. To verify the accuracy of the proposed method, numerical examples are solved and the results obtained by using the proposed method are compared to those obtained by Monte Carlo simulation.

Structure -Properties Relations of Polypropylene/ Liquid Crystalline Polymer Blends

  • Sahoo, N.G.;Das, C.K.;Jeong, Hye-Won;Ha, Chang-Sik
    • Macromolecular Research
    • /
    • v.11 no.4
    • /
    • pp.224-230
    • /
    • 2003
  • The blends of polypropylene (PP) with glass filled thermotropic liquid crystalline polymer (LCP-g) have been prepared by melt mixing techniques at different blend ratios. The thermal, dynamic mechanical, crystalline and morphological characteristics of these blends were investigated. Higher percent crystallinity was observed for 10% level of LCP-g in the blend in comparison to that of other blend ratios. The thermal stability increased with LCP-g concentration in the blend with PP. The variation of storage modulus, stiffness and loss modulus as a function of blend ratios suggested the phase inversion at the 50% level of LCP-g in the blend. The scanning electron microscopy (SEM) photographs showed the creation of voids and destruction of the fiber structures during the dynamic mechanical measurements. Processing behavior of the blends depended on the fiber forming characteristics of LCP-g, which again varied with the molding temperatures.