• Title/Summary/Keyword: dynamic program analysis

Search Result 1,189, Processing Time 0.031 seconds

Probabilistic Analysis of Blasting Loads and Blast-Induced Rock Mass Responses in Tunnel Excavation (터널발파로 인한 굴착선주변 암반거동의 확률론적 연구)

  • 이인모;박봉기;박채우
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.4
    • /
    • pp.89-102
    • /
    • 2004
  • The generated blasting pressure wave initiated under decoupled-charge condition is a function of peak blasting pressure, rise time, and wave-shape function. The peak blasting pressure and the rise time are also the function of explosive and rock properties. The probabilistic distributions of explosive and rock properties are derived from the results of their property tests. Since the probabilistic distributions of explosive and rock properties displayed a normal distribution, the peak blasting pressure and the rise time can also be regarded as a normal distribution. Parameter analysis and uncertainty analysis were performed to identify the most influential parameter that affects the peak blasting pressure and the rise time. Even though the explosive properties were found to be the most influential parameters on the peak blasting pressure and the rise time from the parameter analyses, the result of uncertainty analysis showed that rock properties constituted major uncertainties in estimating the peak blasting pressure and the rise time rather than explosive properties. Damage and overbreak of the remaining rock around the excavation line induced by blasting were evaluated by dynamic numerical analysis. A user-subroutine to estimate the rock damage was coded based on the continuum damage mechanics. This subroutine was linked to a commercial program called 'ABAQUS/Explicit'. The results of dynamic numerical analysis showed that the rock damages generated by the initiation of stopping hole were larger than those from the initiation of contour hole. Several methods to minimize those damages were proposed such as relocation of stopping hole, detailed subdivision of rock classification, and so on. It was found that fracture probability criteria and fractured zones could be distinctively identified by applying fuzzy-random probability.

An improved response surface method for reliability analysis of structures

  • Basaga, Hasan Basri;Bayraktar, Alemdar;Kaymaz, Irfan
    • Structural Engineering and Mechanics
    • /
    • v.42 no.2
    • /
    • pp.175-189
    • /
    • 2012
  • This paper presents an algorithm for structural reliability with the response surface method. For this aim, an approach with three stages is proposed named as improved response surface method. In the algorithm, firstly, a quadratic approximate function is formed and design point is determined with First Order Reliability Method. Secondly, a point close to the exact limit state function is searched using the design point. Lastly, vector projected method is used to generate the sample points and Second Order Reliability Method is performed to obtain reliability index and probability of failure. Five numerical examples are selected to illustrate the proposed algorithm. The limit state functions of three examples (cantilever beam, highly nonlinear limit state function and dynamic response of an oscillator) are defined explicitly and the others (frame and truss structures) are defined implicitly. ANSYS finite element program is utilized to obtain the response of the structures which are needed in the reliability analysis of implicit limit state functions. The results (reliability index, probability of failure and limit state function evaluations) obtained from the improved response surface are compared with those of Monte Carlo Simulation, First Order Reliability Method, Second Order Reliability Method and Classical Response Surface Method. According to the results, proposed algorithm gives better results for both reliability index and limit state function evaluations.

Performance and Sensitivity Analysis of Disk-type Fluidic Control System (디스크형 유체역학적 방향제어 시스템 성능해석 및 설계 인자 민감도 분석)

  • Cho, Mingyoung;Han, Doohee;Sung, Hong-Gye;Choi, Hyun Yung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.3
    • /
    • pp.103-110
    • /
    • 2016
  • A performance analysis program of a disk type fluidic valve was developed to predict a chamber pressure and a response time. A parametric study of this device was performed by using scattering plot method. A sensitivity of Mach number at a nozzle outlet showed the highest value about a outlet diameter of nozzle. An inlet flow rate is the most important parameter to design the fluidic valve because it has high sensitivity value both a outlet velocity and a response time.

A Development of Small-scaled Composite Blade for the Hingeless Rotor System of Helicopter (헬리콥터 힌지없는 로터 시스템용 축소 복합재료 블레이드 개발)

  • Kim, Deog-Kwan;Joo, Gene
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.206-209
    • /
    • 2001
  • This paper contains the development procedure of small-scaled composite rotor blade for helicopter hingeless rotor system. Composite blade design is conducted by using CORDAS program developed by KARI and dynamic analysis is conducted by using Flightlab which is commercial software for helicopter analysis. Also the optimizing procedure of iterative design was described. The designed composite blades were manufactured after establishing the effective curing method. Through this research, the experiences of composite rotor blade development were accumulated and will be applied to the related research field.

  • PDF

Fatigue Life Prediction of Crank-type Rotavator

  • Kim, Dae-Chun;Park, Young-Jun;Lee, Geun-Ho
    • Journal of Biosystems Engineering
    • /
    • v.40 no.4
    • /
    • pp.305-313
    • /
    • 2015
  • Purpose: This study was performed to predict the fatigue life of a crank-type rotavator operated in domestic soil conditions using Recurdyn$^{(R)}$, a dynamic analysis program. Methods: Torque on the PTO shaft was measured using experiments conducted on the uplands and paddy fields in Korea. On the basis of the experimental and analytical results, the fatigue life of the crank-type rotavator was predicted by constructing an S-N curve according to the GL (Germanischer Lloyd Wind Energie GmbH) guideline. Results: The torques experienced by the PTO shaft in the paddy soil and the uplands were in the range of 472~797 N m and 313~430 N m, respectively, for every condition. In case of load condition, the peak torques (846 N m, 770 N m) were applied for severe conditions, resulting in a maximum (von Mises) stress of 75 MPa at the crank arm. The fatigue life of the crank-type rotavator was predicted to be 1,167 h that satisfies the target value of 1,110 h, by substituting the analysis results into an S-N curve of crank arm. Conclusions: The fatigue life of the crank-type rotavator was within the target life for the studied soil conditions; however, further field experiments for various soil conditions would be required to verify the prediction results.

An automobile brake judder analysis using CAE (CAE를 이용한 브레이크 저더 해석)

  • Kim H.J.;Kim S.;Kang H.Y.;Yang S.M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.507-510
    • /
    • 2005
  • Brake judder, which occurs when brakes are suddenly applied to a vehicle driving at high speed, affects the driver's safety to a great extent. It also has a low frequency that drivers can easily feel. Among theses presented, none offered studies using modeling of actual brakes in computer simulation in order to recreate the brake judder phenomenon, and most of them directly applied the frequency generated by the judder. To resolve this issue, this study hopes to develop a computer model that can recreate the phenomenon of brake judder. In this paper, in order to examine the vibration problem occurring when brake is applied on the test car, the multibody dynamic analysis program ADAMS was used to develop a computer model that can recreate the actual braking mechanism while breaking away from the existing understanding of brakes. Thus the existence of the brake judder phenomenon due to DTV(Dist Thickness Variation) and wheel rotating speed was examined through the developed model.

  • PDF

A Study on the Factors that Influence Jack Knife Phenomenon of Articulated Vehicles (연결(連結) 차량(車輛)의 재크나이프 현상에 영향(影響)을 미치는 인자(因子)인자에 대한 연구)

  • Kang, D.M.;Ahn, S.M.
    • Journal of Power System Engineering
    • /
    • v.11 no.2
    • /
    • pp.58-63
    • /
    • 2007
  • Vehicular safety and occupant injury have been of considerable interest to the public. The dynamic response of an articulated vehicle is different from that of single body vehicle due to its geometric and inertia properties. Articulated vehicles have the tendency to jackknife if they lose driving safety. Influence of factors for driving safety of an articulated vehicle(Tractor-Semitrailers) has been analysed by the EDVTS, a kinetic analysis program for an articulated vehicle. EDVTS permits an analyst to investigate the effect of many variables in a short period of time, and enables to obtain an accurate explanation of driving safety. The factors used in the analysis include the load, friction coefficient, tire flat, increase of braking force, and trailer geometry. Based on the results, the articulation angle and driving safety were influenced remarkably by the load, coefficient of friction, increase of braking force. However, trailer geometry, such as length and width, did not affect articulation angle and driving safety

  • PDF

Vibration and damping behaviors of symmetric layered functional graded sandwich beams

  • Demir, Ersin
    • Structural Engineering and Mechanics
    • /
    • v.62 no.6
    • /
    • pp.771-780
    • /
    • 2017
  • In this study, free vibration and damping behaviors of multilayered symmetric sandwich beams and single layered beams made of Functionally Graded Materials were investigated, experimentally and numerically. The beams were composed of Aluminum and Silicon Carbide powders and they were produced by powder metallurgy. Three beam models were used in the experiments. The first model was isotropic, homogeneous beams produced by using different mixing ratios. In the second model, the pure metal layers were taken in the middle of the beam and the weight fraction of the ceramic powder of each layer was increased towards to the surfaces of the beam in the thickness direction. In the third model, the pure metal layers were taken in the surfaces of the beam and the weight fraction of the ceramic powder of each layer was increased towards to middle of the beam. Then the vibration tests were performed. Consequently, the effects of stacking sequence and mixing ratio on the natural frequencies and damping responses of functionally graded beams were discussed from the results obtained. Furthermore, the results obtained from the tests were supported with a finite-element-based commercial program, and it was found to be in harmony.

Geometric Design of Bus Bay Based on Vehicle Trajectory Analysis (차량 이동궤적 기반 버스정차대 기하구조 연구)

  • Kim, Yong Seok;Lee, Suk Ki
    • International Journal of Highway Engineering
    • /
    • v.17 no.6
    • /
    • pp.33-36
    • /
    • 2015
  • PURPOSES : It is desirable for buses to be parallel to the face of the bus shelter at a bus stop. In this way, passengers can safely use the buses without moving into the vehicle area. The study was a review of the current bus bay geometric guidelines, to determine whether they lead buses to stop parallel to the face of the bus shelter by analyzing vehicle trajectory. METHODS : A commercial software program for vehicle trajectory analysis was used under our assumptions about bus dimensions and geometric values. The final position of the bus was analyzed for multiple trajectory simulations, reflecting various geometric alternatives. RESULTS : Within the scope of the study, we concluded that the current design guidelines need to be revised by the design values suggested by the study. CONCLUSIONS : The results of the study suggested alternative design values for bus bay geometry, based on the assumption that buses should be parallel to the face of the bus shelter in order to prevent passengers from moving into the vehicle area.

Dynamic Stress Analysis on Impact Load in 2-Dimensional Plate (충격하중이 작용하는 평판의 동적 응력 해석)

  • 황갑운;조규종
    • Computational Structural Engineering
    • /
    • v.8 no.1
    • /
    • pp.137-146
    • /
    • 1995
  • Structural stress under shock or impact load is varied with the lapse of time and the structural stress is called stress wave. Propagating longitudinal stress wave is studied in a 2-dimensional plate. A finite element program for elastic stress wave propagation is developed in order to investigate the shape of stress field at time increment. The longitudinal stress wave is generated by unit step function. According to the finite element analysis results, the longitudinal stress wave propagates to the similar direction of impact load and the front of stress wave propagates with the same speed as analytic solution and the shape of stress field is similar to that of analytic solution. The shear wave is occurred after the longitudinal stress wave and declined at an angle of 45 degrees compared with longitudinal stress wave and the speed of shear wave is about a half of the longitudinal stress wave. The intensity of shear wave is larger than that of longitudinal stress wave.

  • PDF