• Title/Summary/Keyword: dynamic prediction method

Search Result 549, Processing Time 0.031 seconds

Prediction of the Natural Frequency of Pile Foundation System in Sand during Earthquake (사질토 지반에 놓인 지진하중을 받는 말뚝 기초 시스템의 고유 진동수 예측)

  • Yang, Eui-Kyu;Kwon, Sun-Yong;Choi, Jung-In;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.1
    • /
    • pp.45-54
    • /
    • 2010
  • It is important to calculate the natural frequency of a piled structure in the design stage in order to prevent resonance-induced damage to the pile foundation and analyze the dynamic behavior of the piled structure during an earthquake. In this paper, a simple but relatively accurate method employing a mass-spring model is presented for the evaluation of the natural frequency of a pile-soil system. Greatly influencing the calculation of the natural frequency of a piled structure, the spring stiffness between a pile and soil was evaluated by using the coefficient of subgrade reaction, the p-y curve, and the subsoil elastic modulus. The resulting natural frequencies were compared with those of 1-g shaking table tests. The comparison showed that the natural frequency of the pile-soil system could be most accurately calculated by constructing a stiffness matrix with the spring stiffness of the Reese (1974) method, which utilizes the coefficient of the subgrade reaction modulus, and Yang's (2009) dynamic p-y backbone curve method. The calculated natural frequencies were within 5% error compared with those of the shaking table tests for the pile system in dry dense sand deposits and 5% to 40% error for the pile system in saturated sand deposits depending on the occurrence of excess pore water pressure in the soil.

Prediction of Tropical Cyclone Intensity and Track Over the Western North Pacific using the Artificial Neural Network Method (인공신경망 기법을 이용한 태풍 강도 및 진로 예측)

  • Choi, Ki-Seon;Kang, Ki-Ryong;Kim, Do-Woo;Kim, Tae-Ryong
    • Journal of the Korean earth science society
    • /
    • v.30 no.3
    • /
    • pp.294-304
    • /
    • 2009
  • A statistical prediction model for the typhoon intensity and track in the Northwestern Pacific area was developed based on the artificial neural network scheme. Specifically, this model is focused on the 5-day prediction after tropical cyclone genesis, and used the CLIPPER parameters (genesis location, intensity, and date), dynamic parameters (vertical wind shear between 200 and 850hPa, upper-level divergence, and lower-level relative vorticity), and thermal parameters (upper-level equivalent potential temperature, ENSO, 200-hPa air temperature, mid-level relative humidity). Based on the characteristics of predictors, a total of seven artificial neural network models were developed. The best one was the case that combined the CLIPPER parameters and thermal parameters. This case showed higher predictability during the summer season than the winter season, and the forecast error also depended on the location: The intensity error rate increases when the genesis location moves to Southeastern area and the track error increases when it moves to Northwestern area. Comparing the predictability with the multiple linear regression model, the artificial neural network model showed better performance.

A Study on the Allowable Bearing Capacity of Pile by Driving Formulas (각종 항타공식에 의한 말뚝의 허용지지력 연구)

  • Lee, Jean-Soo;Chang, Yong-Chai;Kim, Yong-Keol
    • Journal of Navigation and Port Research
    • /
    • v.26 no.1
    • /
    • pp.106-111
    • /
    • 2002
  • The estimation of pile bearing capacity is important since the design details are determined from the result. There are numerous ways of determining the pile design load, but only few of them are chosen in the actual design. According to the recent investigation in Korea, the formulas proposed by Meyerhof based on the SPT N values are most frequently chosen in the design stage. In the study, various static and dynamic formulas have been used in predicting the allowable bearing capacity of a pile. Further, the reliability of these formulas has been verified by comparing the perdicted values with the static and dynamic load test measurements. Also, in most cases, these methods of pile bearing capacity determination do not take the time effect consideration, the actual allowable load as determined from pile load test indicates severe deviation from the design value. The principle results of this study are summarized as follows : As a result of estimate the reliability in criterion of the Davisson method, t was showed that Terzaghi & Peck >Chin>Meyerhof > Modified Meyerhof method was the most reliable method for the prediction of bearing capacity. Comparisons of the various pile-driving formulas showed that Modified Engineering News was the most reliable method. However, a significant error happened between dynamic bearing capacity equation was judged that uncertainty of hammer efficiency, characteristics of variable, time effect etc... was not considered. As a result of considering time effect increased skin friction capacity higher than end bearing capacity. It was found out that it would be possible to increase the skin friction capacity 1.99 times higher than a driving. As a result of considering 7 day's time effect, it was obtained that Engineering news, Modified Engineering News, Hiley, Danish, Gates, CAPWAP(CAse Pile Wave Analysis Program) analysis for relation, repectively, $Q_{u(Restrike)} / Q_{u(EOID)} = 0.98t_{0.1}$ , $0.98t_{0.1}$, $1.17t_{0.1}$, $0.88t_{0.1}$, $0.89t_{0.1}$, $0.97t_{0.1}$.

Vortex Tube Modeling Using the System Identification Method (시스템 식별 방법을 이용한 볼텍스 튜브 모델링)

  • Han, Jaeyoung;Jeong, Jiwoong;Yu, Sangseok;Im, Seokyeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.5
    • /
    • pp.321-328
    • /
    • 2017
  • In this study, vortex tube system model is developed to predict the temperature of the hot and the cold sides. The vortex tube model is developed based on the system identification method, and the model utilized in this work to design the vortex tube is ARX type (Auto-Regressive with eXtra inputs). The derived polynomial model is validated against experimental data to verify the overall model accuracy. It is also shown that the derived model passes the stability test. It is confirmed that the derived model closely mimics the physical behavior of the vortex tube from both the static and dynamic numerical experiments by changing the angles of the low-temperature side throttle valve, clearly showing temperature separation. These results imply that the system identification based modeling can be a promising approach for the prediction of complex physical systems, including the vortex tube.

Seismic Response Prediction of a Structure Using Experimental Modal Parameters from Impact Tests (충격시험에 의한 실험모드특성을 이용한 구조물의 지진응답 예측)

  • Cho, Sung-Gook;Joe, Yang-Hee;So, Gi-Hwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.75-84
    • /
    • 2010
  • An in-cabinet response spectrum should be generated to perform the seismic qualification of devices and instruments mounted inside safety-related electrical equipment installed in nuclear power plants. The response spectrum is available by obtaining accurate seismic responses at the device mounting location of the cabinet. The dynamic behavior of most of electrical equipment may not be easily analyzed due to their complex mass and stiffness distributions. Considering these facts, this study proposes a procedure to estimate the seismic responses of a structure by a combination of a test and subsequent analysis. This technique firstly constructs the modal equations of the structure by using the experiment modal parameters obtained from the impact test. Then the seismic responses of the structure may be calculated by a mode superposition method. A simple steel frame structure was fabricated as a specimen for the validation of the proposed method. The seismic responses of the specimen were estimated by using the proposed technique and compared with the measurements obtained from the shaking table tests. The study results show that it is possible to accurately estimate the seismic response of the structure by using the experimental modal parameters obtained from the impact test.

An Predictive Analytics based on Goal-Scenario for Self-adaptive System (자가적응형 시스템을 위한 목표 시나리오 기반 예측 분석)

  • Baek, Su-Jin
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.11
    • /
    • pp.77-83
    • /
    • 2017
  • For efficient predictive analysis, self-healing research is needed that enables the system to recover autonomously by self-cognition and diagnosing system problems. However, software development does not provide formal contextual information analysis and appropriate presentation structure according to external situation. In this paper, we propose a prediction analysis method based on the change contents by applying the extraction rule to the functions that can act, data, and transaction based on the new Goal-scenario. We also evaluated how well the predictive analysis met through the performance indicators for achieving the requirements goal. Compared with the existing methods, the proposed method has a maximum 32.8% higher matching result through performance measurement, resulting in a 28.9% error rate and a 45.8% reduction in the change code. This shows that it can be processed into a serviceable form through rules, and it shows that performance can be expanded through predictive analysis of changes.

Experimental verification of the linear and non-linear versions of a panel code

  • Grigoropoulos, G.J.;Katsikis, C.;Chalkias, D.S.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.1
    • /
    • pp.27-36
    • /
    • 2011
  • In the proposed paper numerical calculations are carried out using two versions of a three-dimensional, timedomain panel method developed by the group of Prof. P. Sclavounos at MIT, i.e. the linear code SWAN2, enabling optionally the use of the instantaneous non-linear Froude-Krylov and hydrostatic forces and the fully non-linear SWAN4. The analytical results are compared with experimental results for three hull forms with increasing geometrical complexity, the Series 60, a reefer vessel with stern bulb and a modern fast ROPAX hull form with hollow bottom in the stern region. The details of the geometrical modeling of the hull forms are discussed. In addition, since SWAN4 does not support transom sterns, only the two versions of SWAN2 were evaluated over experimental results for the parent hull form of the NTUA double-chine, wide-transom, high-speed monohull series. The effect of speed on the numerical predictions was investigated. It is concluded that both versions of SWAN2 the linear and the one with the non-linear Froude-Krylov and hydrostatic forces provide a more robust tool for prediction of the dynamic response of the vessels than the non-linear SWAN4 code. In general, their results are close to what was expected on the basis of experience. Furthermore, the use of the option of non-linear Froude-Krylov and hydrostatic forces is beneficial for the accuracy of the predictions. The content of the paper is based on the Diploma thesis of the second author, supervised by the first one and further refined by the third one.

Impact Test for Measurement of the Carbody Bending Modes of Railway Vehicle (철도차량 차체 굽힘모드 측정을 위한 충격시험)

  • Shin, Bum-Sik;Choi, Yeon-Sun
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.5
    • /
    • pp.423-428
    • /
    • 2012
  • As the speed of high speed train increases, the prediction of ride comfort becomes important. The exciting frequencies due to rail irregularity in high-speed train closes to the second and third natural frequencies of the carbody. The dynamic characteristics of railway vehicles should be checked by modal analysis numerically and experimentally. In this study the bending test for railway vehicle is reviewed and the impact test is suggested to find the natural frequencies and the mode shapes of the carbody. The validity of the impact test is checked with the test for a sample plate which reflects the aspect ratio of the original carbody. The bending test by the impact and the displacement methods of JIS E7105 for a prototype carbody were done in the field and compared. The results show that the impact test can find more accurate natural frequencies and the mode shapes of the carbody than those of the displacement method.

Dynamical Predictions of the Structural Connection by the Reduced Approach (축약법에 의한 구조물 결합부의 동적 거동 예측)

  • Yun, Seong-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.6
    • /
    • pp.589-596
    • /
    • 2014
  • Joints, fasteners or connected parts frequently have a significant effect on the dynamical behavior of assembled mechanical structures. Therefore, the analytical prediction of structural responses depends on the accuracy of joint modeling. This paper deals with the formulation and analysis of dynamic mechanism for joint flexibilities whose relevant magnitudes of stiffnesses are investigated by using linear and torsional springs. The equation of motion is derived by using a generic joint in the middle of clamped-clamped beam. A reanalysis due to changes in magnitudes of joint stiffnesses is based on the reduced analysis where the binomial series terms are used as basis vectors. The solution procedures are straightforward and the method can be readily used with a general finite element method. The computational effort needed by this approach is usually much smaller than the effort needed for complete vibration analysis. Two numerical examples show that accurate results are obtained efficiently by reducing the number of degree in the reduced model.

Boundary condition coupling methods and its application to BOP-integrated transient simulation of SMART

  • Jongin Yang;Hong Hyun Son;Yong Jae Lee;Doyoung Shin;Taejin Kim;Seong Soo Choi
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.1974-1987
    • /
    • 2023
  • The load-following operation of small modular reactors (SMRs) requires accurate prediction of transient behaviors that can occur in the balance of plants (BOP) and the nuclear steam supply system (NSSS). However, 1-D thermal-hydraulics analysis codes developed for safety and performance analysis have conventionally excluded the BOP from the simulation by assuming ideal boundary conditions for the main steam and feed water (MS/FW) systems, i.e., an open loop. In this study, we introduced a lumped model of BOP fluid system and coupled it with NSSS without any ideal boundary conditions, i.e., in a closed loop. Various methods for coupling boundary conditions at MS/FW were tested to validate their combination in terms of minimizing numerical instability, which mainly arises from the coupled boundaries. The method exhibiting the best performance was selected and applied to a transient simulation of an integrated NSSS and BOP system of a SMART. For a transient event with core power change of 100-20-100%, the simulation exhibited numerical stability throughout the system without any significant perturbation of thermal-hydraulic parameters. Thus, the introduced boundary-condition coupling method and BOP fluid system model can expectedly be employed for the transient simulation and performance analysis of SMRs requiring daily load-following operations.