• Title/Summary/Keyword: dynamic power management

Search Result 271, Processing Time 0.026 seconds

Development of 4MW Class High Voltage Inverter System (4MW급 고압 인버터 시스템 개발)

  • 박영민;한기준;최세경;정명길;이세현
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.5
    • /
    • pp.432-437
    • /
    • 2001
  • This paper describes a new developed 3.3KV/4MW class three-level Voltage Source Inverter(VSI), which is equipped with IIMS(Inverter Information Management System) based on the world wide web and with the Virtual operation simulator. The algorithm for motor control is the stator oriented Direct Torque Control(DTC), which works without speed sensor and gives the physically fastest dynamic response. The IIMS have the functions of operation monitoring and data managements. Virtual operation simulator can analyze and tune the system characteristics without main power. Now, this system is under the field test to verify the confidence.

  • PDF

Performance of Fuel Cell System for Medium Duty Truck by Cooling System Configuration (상용차용 고분자 전해질 연료전지 냉각시스템 배열에 따른 성능 특성)

  • WOO, JONGBIN;KIM, YOUNGHYEON;YU, SANGSEOK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.4
    • /
    • pp.236-244
    • /
    • 2021
  • Fuel cell systems for medium duty truck require high power demands under driving. Since high power demands results in significant heat generation, thermal management is crucial for the performance and durability of medium duty truck. Therefore, various configurations of dual stacks with cooling systems are investigated to understand appropriate thermal management conditions. The simulation model consists of a dynamic fuel cell stack model, a cooling system model equipped with a controller, and the mounted controller applies a feedback controller to control the operating temperature. Also, In order to minimize parasitic power, the comparison of the cooling systems involved in the arrangement was divided into three case. As a result, this study compares the reaction of fuel cells to the placement of the cooling system under a variety of load conditions to find the best placement method.

Low-Power Motion Estimator Architecture for Deep Sub-Micron Multimedia SoC (Deep Submicron 공정의 멀티미디어 SoC를 위한 저전력 움직임 추정기 아키텍쳐)

  • 연규성;전치훈;황태진;이성수;위재경
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.10
    • /
    • pp.95-104
    • /
    • 2004
  • This paper propose a motion estimator architecture to reduce the power consumption of the most-power-consuming motion estimation method when designing multimedia SoC with deep submicron technologies below 0.13${\mu}{\textrm}{m}$. The proposed architecture considers both dynamic and static power consumption so that it is suitable for large leakage process technologies, while conventional architectures consider only dynamic power consumption. Consequently, it is suitable for mobile information terminals such as mobile videophone where efficient power management is essential. It exploits full search method for simple hardware implementation. It also exploits early break-off method to reduce dynamic power consumption. To reduce static power consumption, megablock shutdown method considering power line noise is also employed. To evaluate the proposed architecture when applied multimedia SoC, system-level control flow and low-power control algorithm are developed and the power consumption was calculated based on thor From the simulation results, power consumption was reduced to about 60%. Considering the line width reduction and increased leakage current due to heat dissipation in chip core, the proposed architecture shows steady power reduction while it goes worse in conventional architectures.

A Tier-Based Duty-Cycling Scheme for Forest Monitoring

  • Zhang, Fuquan;Gao, Deming;Joe, In-Whee
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1320-1330
    • /
    • 2017
  • Wireless sensor networks for forest monitoring are typically deployed in fields in which manual intervention cannot be easily accessed. An interesting approach to extending the lifetime of sensor nodes is the use of energy harvested from the environment. Design constraints are application-dependent and based on the monitored environment in which the energy harvesting takes place. To reduce energy consumption, we designed a power management scheme that combines dynamic duty cycle scheduling at the network layer to plan node duty time. The dynamic duty cycle scheduling is realized based on a tier structure in which the network is concentrically organized around the sink node. In addition, the multi-paths preserved in the tier structure can be used to deliver residual packets when a path failure occurs. Experimental results show that the proposed method has a better performance.

Adaptive Power Control Dynamic Range Algorithm in WCDMA Downlink Systems (WCDMA 하향 링크 시스템에서의 적응적 PCDR 알고리즘)

  • Jung, Soo-Sung;Park, Hyung-Won;Lim, Jae-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.9A
    • /
    • pp.1048-1057
    • /
    • 2004
  • WCDMA system is 3rd generation wireless mobile system specified by 3GPP. In WCDMA downlink, two power control schemes are operated. One is inner loop power control operated m every slot Another is outer loop power control based on one frame time. Base staion (BS) can estimate proper transmission power by these two power control schemes. However, because each MS's transmission power makes a severe effect on BS's performance, BS cannot give excessive transmission power to the speclfic user 3GPP defined Power Control Dynamic Range (PCDR) to guarantee proper BS's performance. In this paper, we propose Adaptive PCDR algorithm. By APCDR algorithm, Radio Network Controller (RNC) can estimate each MS's current state using received signal to interference ratio (SIR) APCDR algorithm changes MS's maximum code channel power based on frame. By proposed scheme, each MS can reduce wireless channel effect and endure outages in cell edge. Therefore, each MS can obtain better QoS. Simulation result indicate that APCDR algorithm show more attractive output than fixed PCDR algorithm.

Resouce Allocation for Multiuser OFDM Systems (다중사용자 OFDM 광대역 무선인터넷 시스템의 자원할당 방법)

  • Chung, Yong-Joo;Paik, Chun-Hyun;Kim, Hu-Gon
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.32 no.3
    • /
    • pp.33-46
    • /
    • 2007
  • This study deals with the adaptive multiuser OFDM (Orthogonal Frequency Division Multiplexing) system which adjusts the resource allocation according to the environmental changes in such as wireless and quality of service required by users. The resource allocation includes subcarrier assignment to users, modulation method and power used for subcarriers. We first develop a general optimization model which maximizes data throughput while satisfying data rates required by users and total power constraints. Based on the property that this problem has the 0 duality gap, we apply the subgradient dual optimization method which obtains the solution of the dual problem by iteration of simple calculations. Extensive experiments with realistic data have shown that the subgradient dual method is applicable to the real world system, and can be used as a dynamic resource allocation mechanism.

New Battery Balancing Circuit using Magnetic Flux Sharing

  • Song, Sung-Geun;Park, Seong-Mi;Park, Sung-Jun
    • Journal of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.194-201
    • /
    • 2014
  • To increase the capacity of secondary cells, an appropriate serial composition of the battery modules is essential. The unbalance that may occur due to the series connection in such a serial composition is the main cause for declines in the efficiency and performance of batteries. Various studies have been conducted on the use of a passive or active topology to eliminate the unbalance from the series circuit of battery modules. Most topologies consist of a complex structure in which the Battery Management System (BMS) detects the voltage of each module and establishes the voltage balancing in the independent electrical power converters installed on each module by comparing the module voltage. This study proposes a new magnetic flux sharing type DC/DC converter topology in order to remove voltage unbalances from batteries. The proposed topology is characterized by a design in which all of the DC/DC convertor outputs connected to the modules converge into a single transformer. In this structure, by taking a form in which all of the battery balancing type converters share magnetic flux through a single harmonic wave transformer, all of the converter voltages automatically converge to the same voltage. This paper attempts to analyze the dynamic properties of the proposed circuit by using a Programmable Synthesizer Interface Module (PSIM), which is useful for power electronics analysis, while also attempting to demonstrate the validity of the proposed circuit through experimental results.

Home Energy Management System for Interconnecting and Sensing of Electric Appliances

  • Cho, Wei-Ting;Lai, Chin-Feng;Huang, Yueh-Min;Lee, Wei-Tsong;Huang, Sing-Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.7
    • /
    • pp.1274-1292
    • /
    • 2011
  • Due to the variety of household electric devices and different power consumption habits of consumers at present, general home energy management (HEM) systems suffer from the lack of dynamic identification of various household appliances and a unidirectional information display. This study presented a set of intelligent interconnection network systems for electric appliances, which can measure the power consumption of household appliances through a current sensing device based on OSGi platform. The system establishes the characteristics and categories of related electric appliances, and searches the corresponding cluster data and eliminates noise for recognition functionality and error detection mechanism of electric appliances by applying the clustering algorithm. The system also integrates household appliance control network services so as to control them according to users' power consumption plans or through mobile devices, thus realizing a bidirectional monitoring service. When the system detects an abnormal operating state, it can automatically shut off electric appliances to avoid accidents. In practical tests, the system reached a recognition rate of 95%, and could successfully control general household appliances through the ZigBee network.

Knowledge-based Approach for Solving Short-term Power Scheduling in Extended Power Systems (확장된 발전시스템에서 지식기반 해법을 이용한 단기운영계획 수립에 관한 연구)

  • 김철수
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.23 no.2
    • /
    • pp.187-200
    • /
    • 1998
  • This paper presents an original approach for solving short-term power scheduling in extended power system with two fuels in a unit and a limited fuel using Lagrangian relaxations. The underlying model incorporates the full set of costs and constraints including setup, production, ramping, and operational status, and takes the form of a mixed integer nonlinear control problem. Moreover, the mathematical model developed includes two fuels in a unit and a limited fuel, regulation reserve requirements of prespecified group of units. Lagrangian relaxation is used to disaggregate the model by generator into separate subproblems which are then solved with a nested dynamic program including empirical knowledges. The strength of the methodology lies partially in its ability to construct good feasible solutions from information provided by the dual. Thus, the need for branch-and-bound is eliminated. In addition, the inclusion of two fuels in a unit and a limited fuel provides new insight into the limitations of current techniques. Computational experience with the proposed algorithm indicates that Problems containing up to 23 units including 8 unit used two fuels and 24 time periods can be readily solved in reasonable times. Duality gaps of less than 4% were achieved.

  • PDF

A System Simulation Model of Proton Exchange Membrane Fuel Cell for Residential Power Generation for Thermal Management Study (가정용 연료전지 시스템의 열관리 해석을 위한 시스템 운전 모델 개발)

  • Yu, Sang-Seok;Lee, Young-Duk;Ahn, Kook-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.1
    • /
    • pp.19-26
    • /
    • 2010
  • A PEMFC(proton exchange membrane fuel cell) is a good candidate for residential power generation to be coped with the shortage of fossil fuel and green house gas emission. The attractive benefit of the PEMFC is to produce electric power as well as hot water for home usage. The thermal management of PEMFC for RPG is to utilize the heat of PEMFC so that the PEMFC can be operated at its optimal efficiency. In this study, thermal management system of PEMFC stack is modeled to understand the dynamic response during load change. The thermal management system of PEMFC for RPGFC is composed of two cooling circuits, one for controling the fuel cell temperature and the other for heating up the water for home usage. The different operating strategy is applied for each cooling circuit considering the duty of those two circuits. Even though the capacity of PEMFC system (1kW) is enough to supply hot domestic water for residence, heat-up of reservior takes some hours. Therefore, in this study, time schedule of the simulation reflects the heat-up process. Dynamic responses and operating strategies of the PEMFC system are investigated during load changes.