• Title/Summary/Keyword: dynamic particles

Search Result 333, Processing Time 0.03 seconds

Discrete element numerical simulation of dynamic strength characteristics of expanded polystyrene particles in lightweight soil

  • Wei Zhou;Tian-shun Hou;Yan Yang;Yu-xin Niu;Ya-sheng Luo;Cheng Yang
    • Geomechanics and Engineering
    • /
    • v.34 no.5
    • /
    • pp.577-595
    • /
    • 2023
  • A dynamic triaxial discrete element numerical model of lightweight soil was established using the discrete element method to study the microscopic mechanism of expanded polystyrene (EPS) particles in the soil under cyclic loading. The microscopic parameters of the discrete element model of the lightweight soil were calibrated depending on the dynamic triaxial test hysteresis curves. Based on the calibration results, the effects of the EPS particles volume ratio and amplitude on the contact force, displacement field, and velocity field of the lightweight soil under different accumulated strains were studied. The results showed that the hysteresis curves of lightweight soil exhibit nonlinearity, hysteresis, and strain accumulation. The strain accumulated in remolded soil is mainly tensile strain, and that in lightweight soil is mainly compressive strain. As the volume ratio of EPS particles increased, the contact force first increased and then decreased, and the displacement and velocity of the particles increased accordingly. With an increase in amplitude, the dynamic stress of the particle system increased, and the accumulation rate of the dynamic strain of the samples also increased. At 5% compressive strain, the contact force of the particles changed significantly and the number of particles deflected in the direction of velocity also increased considerably. These results indicated that the cemented structure of the lightweight soil began to fail at a compressive strain of 5%. Thus, a compressive strain of 5% is more reasonable than the dynamic strength failure standard of lightweight soil.

FIRE DYNAMIC SIMULATOR WITH MARKER PARTICLES (표시입자가 적용된 FDS 코드 개발)

  • Choi, C.B.;Jang, Y.J.;Lee, K.;Yang, K.S.
    • Journal of computational fluids engineering
    • /
    • v.16 no.4
    • /
    • pp.55-63
    • /
    • 2011
  • In this study, Fire Dynamic Simulator (FDS) has been improved with the implementation of marker particles. Convectional FDS is able to implement only two curved geometries, namely, circular cylinders and spheres. The introduction of marker particles made it possible to implement arbitrarily curved objects. Moreover, an algorithm that extracts the marker particle information from a model designed by AutoCAD was developed. With the present implementation, applicability of FDS is greatly enhanced, beneficial to both academia and industry.

Vibration Analysis of Separation Screen for a Recycling of Construction Wastes (건설폐기물의 재활용을 위한 분리스크린의 진동해석)

  • Kim, K.K.;Kim, M.S.;Son, K.;Kim, K.H.;Moon, B.Y.
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1057-1062
    • /
    • 2007
  • The purpose of this study is to find out design parameters of vibrating screen, such as particles motion, specific gravity, shape, and kinetic friction. In order to approach this problem, four materials of construction wastes, wood, styrofoam, concrete, and sand are used for dynamic modeling. To present friction between the particles material and tilt plates material, these particles model is applied in order to verify effectively. Generally, the vibrating screen is composed of three assemblies such as screen, wastes guide, supported of screen. This model regards vibrator as system of screen fixed tilt plates. The model is analyzed to present what kind of particles motion while the system is vibrating. and this vibration system has been implemented in a ADAMS dynamaic program. This modeling is consist of dynamic model separation state on particle size. This study make good technique to verify in theory.

  • PDF

A New Rigid Rod Model for the Discrete Element Method to Analyze the Dynamic Behavior of Needle-shaped Powder (침상형 입자의 동적 거동 해석을 위한 강체 막대형 이산요소법 모델 개발)

  • An, Seong-Hae;Park, Junyoung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.2
    • /
    • pp.149-154
    • /
    • 2017
  • Numerous studies of the dynamic behavior of powders have been performed by Discrete Element Method (DEM). The behavior of powders can be analyzed using the DEM assuming that the powder is composed of spherical particles. Moreover, the assumption of spherical particle reduces the computing time significantly. However, the biggest problem with this assumption is the real shape of the particles. Some types of particles, such as calcium carbonate and colloidal copper, are needle shaped. Thus, analysis based on spherical particles can produce errors because of the incorrect assumption. In this research, we developed a new model to simulate needle-shaped particles using the DEM. In the model, a series of particles are connected and regarded as a rod. There is no relative motion among the particles. Thus, the behavior of the rod is rigid motion. To validate the developed model, we carried out the drop-and-bounce test with different initial angles. The results showed negligible error of less than 2%.

Dynamic Modelling of Planar Mechanisms Using Point Coordinates

  • Attia, Hazem-Ali
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.1977-1985
    • /
    • 2003
  • In the present study, the dynamic modelling of planar mechanisms that consist of a system of rigid bodies is carried out using point coordiantes. The system of rigid bodies is replaced by a dynamically equivalent constrained system of particles. Then for the resulting equivalent system of particles, the concepts of linear and angular momentums are used to generate the equations of motion without either introducing any rotational coordinates or distributing the external forces and force couples over the particles. For the open loop case, the equations of motion are generated recursively along the open chains. For the closed loop case, the system is transformed to open loops by cutting suitable kinematic joints with the addition of cut-joints kinematic constraints. An example of a multi-branch closed-loop system is chosen to demonstrate the generality and simplicity of the proposed method.

Preparation of Silica Hollow Composite Particles

  • Lee, Dong Hoon;Lee, Chang Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.11
    • /
    • pp.3303-3306
    • /
    • 2014
  • A facile and effective approach has been developed to prepare hybrid hollow microspheres, via consecutive processes of pickering mini-emulsion polymerization for core-shell formation, and calcination of the sacrificial core. The resulting hollow composite particles have mono-layered shells. The morphology and size characteristics of synthesized composite particles were investigated, using dynamic light scattering (DLS) and scanning electron microscopy (SEM) measurements.

Numerical Simulation for the Aggregation of Charged Particles (하전입자의 응집성장에 대한 수치적 연구)

  • Park, Hyung-Ho;Kim, Sang-Soo;Chang, Hyuk-Sang
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.605-611
    • /
    • 2001
  • A numerical technique for simulating the aggregation of charged particles was presented with a Brownian dynamic simulation in the free molecular regime. The Langevin equation was used for tracking each particle making up an aggregate. A periodic boundary condition was used for calculation of the aggregation process in each cell with 500 primary particles of 16 nm in diameter. We considered the thermal force and the electrostatic force for the calculation of the particle motion. The morphological shape of aggregates was described in terms of the fractal dimension. The fractal dimension for the uncharged aggregate was $D_{f}=1.761$. The fractal dimension changed slightly for the various amounts of bipolar charge. However, in case of unipolar charge, the fractal dimension decreased from 1.641 to 1.537 with the increase of the average number of charges on the particles from 0.2 to 0.3 in initial states.

  • PDF

Dynamic simulation of squeezing flow of ER fluids using parallel processing

  • Kim, Do-Hoon;Chu, Sang-Hyon;Ahn, Kyung-Hyun;Lee, Seung-Jong
    • Korea-Australia Rheology Journal
    • /
    • v.11 no.3
    • /
    • pp.233-240
    • /
    • 1999
  • In order to understand the flow behavior of Electrorheological (ER) fluid, dynamic simulation has been intensively performed for the last decade. When the shear flow is applied, it is easy to carry out the simulation with relatively small number of particles because of the periodic boundary condition. For the squeezing flow, however, it is not easy to apply the periodic boundary condition, and the number of particles needs to be increased to simulate the ER system more realistically. For this reason, the simulation of ER fluid under squeezing flow has been mostly performed with some representative chains or with the approximation that severely restricts the flow geometry to reduce the computational load. In this study, Message Passing Interface (MPI), which is one of the most widely-used parallel processing techniques, has been employed in a dynamic simulation of ER fluid under squeezing flow. As the number of particles used in the simulation could be increased significantly, full domain between the electrodes has been covered. The numerical treatment or the approximation used to reduce the computational load has been evaluated for its validity, and was found to be quite effective. As the number of particles is increased, the fluctuation of the normal stress becomes diminished and the prediction in general was found to be qualitatively In good agreement with the experimental results.

  • PDF

Robust Localization Algorithm for Mobile Robots in a Dynamic Environment with an Incomplete Map (동적 환경에서 불완전한 지도를 이용한 이동로봇의 강인한 위치인식 알고리즘의 개발)

  • Lee, Jung-Suk;Chung, Wan Kyun;Nam, Sang Yep
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.3 no.2
    • /
    • pp.109-118
    • /
    • 2008
  • We present a robust localization algorithm using particle filter for mobile robots in a dynamic environment. It is difficult to describe moving obstacles like people or other robots on the map and the environment is changed after mapping. A mobile robot cannot estimate its pose robustly with this incomplete map because sensor observations are corrupted by un-modeled obstacles. The proposed algorithms provide robustness in such a dynamic environment by suppressing the effect of corrupted sensor observations with a selective update or a sampling from non-corrupted window. A selective update method makes some particles keep track of the robot, not affected by the corrupted observation. In a sampling from non-corrupted window method, particles are always sampled from several particle sets which use only non-corrupted observation. The robustness of proposed algorithm is validated with experiments and simulations.

  • PDF

Determination of DEM Input Parameters for Dynamic Behavior Simulation of Aggregates (골재의 동적 거동 모사를 위한 DEM 입력변수의 결정 연구)

  • Yun, Tae Young;Yoo, Pyeong Jun;Kim, Yeon Bok
    • International Journal of Highway Engineering
    • /
    • v.16 no.1
    • /
    • pp.21-30
    • /
    • 2014
  • PURPOSES : Evaluation of input parameters determination procedure for dynamic analysis of aggregates in DEM. METHODS : In this research, the aggregate slump test and angularity test were performed as fundamental laboratory tests to determine input parameters of spherical particles in DEM. The heights spreads, weights of the simple tests were measured and used to calibrate rolling and static friction coefficients of particles. RESULTS : The DEM simulations with calibrated parameters showed good agreement with the laboratory test results for given dynamic condition. CONCLUSIONS : It is concluded that the employed calibration method can be applicable to determine rolling friction coefficient of DEM simulation for given dynamic conditions. However, further research is necessary to connect the result to the behavior of aggregate in packing and mixing process and to refine static friction coefficient.