• Title/Summary/Keyword: dynamic parameters

Search Result 3,972, Processing Time 0.035 seconds

An efficient approach for model updating of a large-scale cable-stayed bridge using ambient vibration measurements combined with a hybrid metaheuristic search algorithm

  • Hoa, Tran N.;Khatir, S.;De Roeck, G.;Long, Nguyen N.;Thanh, Bui T.;Wahab, M. Abdel
    • Smart Structures and Systems
    • /
    • v.25 no.4
    • /
    • pp.487-499
    • /
    • 2020
  • This paper proposes a novel approach to model updating for a large-scale cable-stayed bridge based on ambient vibration tests coupled with a hybrid metaheuristic search algorithm. Vibration measurements are carried out under excitation sources of passing vehicles and wind. Based on the measured structural dynamic characteristics, a finite element (FE) model is updated. For long-span bridges, ambient vibration test (AVT) is the most effective vibration testing technique because ambient excitation is freely available, whereas a forced vibration test (FVT) requires considerable efforts to install actuators such as shakers to produce measurable responses. Particle swarm optimization (PSO) is a famous metaheuristic algorithm applied successfully in numerous fields over the last decades. However, PSO has big drawbacks that may decrease its efficiency in tackling the optimization problems. A possible drawback of PSO is premature convergence leading to low convergence level, particularly in complicated multi-peak search issues. On the other hand, PSO not only depends crucially on the quality of initial populations, but also it is impossible to improve the quality of new generations. If the positions of initial particles are far from the global best, it may be difficult to seek the best solution. To overcome the drawbacks of PSO, we propose a hybrid algorithm combining GA with an improved PSO (HGAIPSO). Two striking characteristics of HGAIPSO are briefly described as follows: (1) because of possessing crossover and mutation operators, GA is applied to generate the initial elite populations and (2) those populations are then employed to seek the best solution based on the global search capacity of IPSO that can tackle the problem of premature convergence of PSO. The results show that HGAIPSO not only identifies uncertain parameters of the considered bridge accurately, but also outperforms than PSO, improved PSO (IPSO), and a combination of GA and PSO (HGAPSO) in terms of convergence level and accuracy.

Magnitudes of the Harmonic Components Emitted from Utrasonic Contrast Agents in Response to a Diagnostic Utrasound: Theoretical Consideration (진단용 초음파에 의해 가진된 초음파 조영제에서 방사하는 하모닉 성분의 크기: 이론적 고찰)

  • Kang Gwan Suk;Yu Ji Chul;Paeng Dong Guk;Rhim Sung Min;Choi Min Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.78-86
    • /
    • 2005
  • This study considers the magnitude of the harmonic components radiated from the ultrasonic contrast agents (UCA) activated by a typical diagnostic ultrasound. The nonlinear dynamic response of UCA to a 2 MHz diagnostic ultrasound pulse was predicted using Gilmore Model. The elastic property of the shell membrane of the UCA was ignored in the numerical model. Simulation was carried out for the UCA varying from 1 - 9 $\mu$m in its initial radius and the driving diagnostic ultrasound whose mechanical index (MI) ranges from 0.125 to 8. The powers of the sub. ultra and second harmonics of the acoustic signal from the UCA activated were compared with that of the fundamental component. The results show that. if the UCA is bigger than its resonant size (2 $\mu$m in radius for the present case) the sub harmonic power was much bigger than the fundamental. In particular, the 2nd harmonic component currently used as an imaging parameter for the harmonic imaging, was predicted to be lower in power than both the sub and the ultra harmonic component. This study indicates that, for obtaining harmonic imaging with UCA, the sub or ultra harmonics could be taken as imaging parameters better than the 2nd harmonic component.

A numerical fluid dynamic study of a high temperature operating cyclone (고온 작동 싸이클론 유체역학적 거동 전산 연구)

  • Shin, Mi-Soo;Kim, Hey-Suk;Jang, Dong-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.11
    • /
    • pp.1033-1040
    • /
    • 2009
  • One thing to note in cyclone operation and design is to minimize the pressure drop with the enhancement of the efficiency of dust collection. This can be facilitated by the detailed resolution of complex fluid flow occurring inside a cyclone. To this end, the main objective of this study was to obtain the detailed fluid dynamics by the development of a reliable computation method and thereby to figure out the physics of dust collection mechanism for more extreme environment caused by high temperature and pressure condition. First of all, the computer program developed was evaluated against experimental result. That is, the numerical calculation predicts well the data of experimental pressure drop as a function of flow rate for the elevated pressure and temperature condition employed in this study. The increase of pressure and temperature generally affects significantly the collection efficiency of fine particle but the effect of pressure and temperature appears contrary each other. Therefore, the decrease of collection efficiency caused by the high operating temperature mainly due to the decrease of gaseous density can be remedied by increase of operating pressure. After the evaluation of the program, a series of parametric investigations are performed in terms of major cyclone design or operating parameters such as tangential velocity and vortex finder diameter for dusts of a certain range of particle diameters, etc. As expected, tangential velocity plays the most important effect on the collection efficiency. And the efficiency was not affected significantly by the change of the length of vortex finder but the diameter of vortex finder plays an important role for the enhancement of collection efficiency.

Knowledge Production Function in South Korea : An Empirical Analysis (우리나라 지식생산함수 : 실증분석)

  • Cho, Sang-Sup;Jung, Dong-Jin
    • Journal of Korea Technology Innovation Society
    • /
    • v.10 no.3
    • /
    • pp.383-405
    • /
    • 2007
  • In this paper we estimate knowledge production function for 15 South Korean industry sectors using panel data. To accommodate the influence of inter-sectoral interactions on the creation of knowledge, we estimate parameters for related knowledge production functions using the Dynamic Seemingly Unrelated Regression(DSUR) model proposed by Mark et al. (2005). We find the elasticity of knowledge production with respect to the size of research staff to be 0.25 and that with respect to the existing stock of knowledge to be 0.35. The fact that the elasticity of new knowledge creation with regard to the existing knowledge stock is below 1 in South Korea corroborates the view that the rate of long-term growth of her economy is chiefly determined by the elasticity related to production functions of goods and services and the rate of population growth, and that her government policy, to ensure a continued growth for the Korean economy, must shift the focus of R&D policies from the current direct intervention-centered model to one consisting of indirect measures, namely supporting knowledge management and diffusion and the creation of a knowledge sharing system. In terms of R&D policy implications it could be consider that the national knowledge production system should strengthen the cumulative process of knowledge accumulation and population for research and development. Our country R&D policy, also, need to adopt a global approach to increase knowledge stock at the highest levels of a country.

  • PDF

Characteristic Analysis of Permanent Magnet Linear Generator by using Space Harmonic Method (공간고조파법을 이용한 영구자석 선형 발전기의 특성 해석)

  • Seo, Seong-Won;Choi, Jang-Young;Kim, Il-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.688-695
    • /
    • 2017
  • This paper deals with characteristics analysis of a permanent magnet (PM) linear generator using analytical methods for wave energy harvesting. The wave energy is carried out from the movement of a yo-yo system. A linear generator using permanent magnets to generate a magnetic force itself does not require a separate power supply and has the advantage of simple maintenance. In addition to the use of a rare earth, a permanent magnet having a high-energy density can be miniaturized and lightweight, and can obtain high energy-conversion efficiency. We derived magnetic field solutions produced by the permanent magnet and armature reaction based on 2D polar coordinates and magnetic vector potential. Induced voltage is obtained via arbitrary sinusoidal input. In addition, electrical parameters are obtained, such as back-EMF constant, resistance, and self- and mutual-winding inductances. The space harmonic method used in this paper is confirmed by comparing it with finite element method (FEM) results. These facilitate the characterization of the PM-type linear generator and provide a basis for comparative studies, design optimization, and machine dynamic modeling.

Posterior Cervical Fixation with Nitinol Shape Memory Loop in the Anterior-Posterior Combined Approach for the Patients with Three Column Injury of the Cervical Spine: Preliminary Report

  • Yu, Dong-Kun;Heo, Dong-Hwa;Cho, Sung-Min;Choi, Jong-Hun;Sheen, Seung-Hun;Cho, Yong-Jun
    • Journal of Korean Neurosurgical Society
    • /
    • v.44 no.5
    • /
    • pp.303-307
    • /
    • 2008
  • Objective: The authors reviewed clinical and radiological outcomes in patients with three column injury of the cervical spine who had undergone posterior cervical fixation using Nitinol shape memory alloy loop in the anterior-posterior combined approach. Materials: Nine patients were surgically treated with anterior cervical fusion using an iliac bone graft and dynamic plate-screw system, and the posterior cervical fixation using Nitinol shape memory loop ($Davydov^{TM}$) at the same time. A retrospective review was performed. Clinical outcomes were assessed using the Frankel grading method. We reviewed the radiological parameters such as bony fusion rate, height of iliac bone graft strut, graft subsidence, cervical lordotic angle, and instrument related complication. Results: Single-level fusion was performed in five patients, and two-level fusion in four. Solid bone fusion was presented in all cases after surgery. The mean height of graft strut was significantly decreased from $20.46{\pm}9.97mm$ at immediate postoperative state to $18.87{\pm}8.60mm$ at the final follow-up period (p<0.05). The mean cervical lordotic angle decreased from $13.83{\pm}11.84^{\circ}$ to $11.37{\pm}6.03^{\circ}$ at the immediate postoperative state but then, increased to $24.39{\pm}9.83^{\circ}$ at the final follow-up period (p<0.05). There were no instrument related complications. Conclusion: We suggest that the posterior cervical fixation using Nitinol shape memory alloy loop may be a simple and useful method, and be one of treatment options in anterior-posterior combined approach for the patients with the three column injury of the cervical spine.

Shared Resource Management Scheme in Advance and Immediate Reservations for Effective Resource Allocation (효율적인 자원 할당을 위한 사전 예약과 즉석 예약 간 공유 자원 관리)

  • 이동훈;김종원
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.7B
    • /
    • pp.685-696
    • /
    • 2004
  • Real-time multimedia applications that require large amount of bandwidth need resource reservation before starting service for providing the QoS(i.e., Quality of Service). To reserve resources in advance, each reservation request has to notify its expectation on the required amount of resources and service duration. Using this information, a resource manager can schedule advance reservations. However, most existing resource management systems are adopting straightforward call admission control process (i.e., only immediate reservation) by checking currently available resources without considering the service duration. Hence, the resource management system that supports advance reservation has to manage confliction caused by indefinite service duration of immediate reservation. Even though the separation of resource pool according to type of reservation can prevent the confliction, it causes low resource utilization. In this paper, we propose an effective resource management scheme that supports both immediate and advance reservations by sharing resources dynamically. Using network cost function, the proposed scheme determines and adaptively adjusts resource boundary according to the confliction rate by varying weight parameters. And also, we define user utility function to quantify user satisfaction based on how well the reserved resource is guaranteed during service time. Simulation results using NS-2 network simulator show that the proposed scheme can achieve better resource utilization with preferable QoS than other schemes like static resource partitioning.

MAC Scheduling Algorithm for Efficient Management of Wireless Resources in Bluetooth Systems (블루투스 시스템에서의 효율적 무선자원관리를 위한 MAC 스케쥴링 기법)

  • 주양익;권오석;오종수;김용석;이태진;엄두섭;차균현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.9A
    • /
    • pp.702-709
    • /
    • 2003
  • In this paper, we propose an efficient and QoS-aware MAC scheduling algorithm for Bluetooth, which considers both throughput and delay performance of each Master-Slave pair in scheduling decisions, and thus, attempts to maximize overall performance. The proposed algorithm, MTDPP (Modified Throughput-Delay Priority Policy), makes up for the drawbacks of T-D PP (Throughput-Delay Priority Policy) proposed in [6] and improves the performance. Since Bluetooth employs a master-driven TDD based scheduling algorithm, which is basically operated with the Round Robin policy, many slots may be wasted by POLL or NULL packets when there is no data waiting for transmission in queues. To overcome this link wastage problem, several algorithms have been proposed. Among them, queue state-based priority policy and low power mode-based algorithm can perform with high throughput and reasonable fairness. However, their performances may depend on traffic characteristics, i.e., static or dynamic, and they require additional computational and signaling overheads. In order to tackle such problems, we propose a new scheduling algorithm. Performance of our proposed algorithm is evaluated with respect to throughput and delay. Simulation results show that overall performances can be improved by selecting suitable parameters of our algorithm.

Mixing Analysis of Oil Spilled into the River by GPS-equipped Drifter Experiment and Numerical Modeling (GPS 부자 실험과 수치모델링에 의한 하천에 유입된 유류오염물질의 거동 해석)

  • Jang, Juhyoung;Jong, Jaehun;Mun, Hyunsaing;Kim, Kyunghyun;Seo, Ilwon
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.3
    • /
    • pp.243-252
    • /
    • 2016
  • In cases of water pollution accidents, accurate prediction for arrival time and concentration of contaminants in a river is essential to take proper measures and minimize their impact on downstream water intake facilities. It is critical to fully understand the behavior characteristics of contaminants on river surface, especially in case of oil spill accidents. Therefore, in this study, the effects of main parameters of advection and diffusion of contaminants were analyzed and validated by comparing the results of Lagrangian particle tracking (LPT) simulation of Environmental Fluid Dynamic Code (EFDC) model with those of Global Position System (GPS)-equipped drifter experiment. Prevention scenario modeling was accomplished by taking cases of movable weir operation into account. The simulated water level and flow velocity fluctuations agreed well with observations. There was no significant difference in the speed of surface particle movement between 5 and 10 layer modeling. Therefore, 5 layer modeling could be chosen to reduce computational time. It was found that full three dimensional modeling simulated wind effects on surface particle movements more sensitively than depth-averaged two dimensional modeling. The diffusion range of particles was linearly proportional to horizontal diffusivity by sensitivity analysis. Horizontal diffusivity estimated from the results of GPS-equipped drifter experiment was 0.096 m2/sec, which was considered to be valid for applying the LPT module in this area. Finally, the scenario analysis results showed that particle movements could be stagnant when discharge from the upstream weir was reduced, implying the possibility of securing time for mitigation actions such as oil boom installation and wiping oil contaminants. The outcomes of this study can help improve the prediction accuracy of particle tracking simulation to establish the most suitable mitigation plan considering the combination of movable weir operation.

A Case Study on the Data Processing to Enhance the Resolution of Chirp SBP Data (Chirp SBP 자료 해상도 향상을 위한 전산처리연구)

  • Kim, Young-Jun;Kim, Won-Sik;Shin, Sung-Ryul;Kim, Jin-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.4
    • /
    • pp.289-297
    • /
    • 2011
  • Chirp sub-bottom profilers (SBP) data are comparatively higher-resolution data than other seismic data and it's raw signal can be used as a final section after conducting basic filtering. However, Chirp SBP signal has possibility to include various noise in high-frequency band and to provide the distorted image for the complex geological structure in time domain. This study aims at the goal to establish the workflow of Chirp SBP data processing for enhanced image and to analyze the proper parameters for the domestic continental shelf. After pre-processing, we include the dynamic S/N filtering to eliminate the high-frequency component noise, the dip scan stack to enhance the continuity of reflection events and finally the post-stack depth migration to correct the distorted structure on the time domain sections. We demonstrated our workflow on the data acquired by domestically widely used equipments and then we could obtain the improved seismic sections of depth domain. This workflow seems to provide the proper seismic section to interpretation when applied to data processing of Chirp SBP that are largely used for domestic acquisition.