• Title/Summary/Keyword: dynamic packet size

Search Result 29, Processing Time 0.024 seconds

A Dynamic Wavelength and Bandwidth Allocation Algorithm with Dynamic Framing under Ring-based EPON Architecture

  • Bang, Hak-Jeon;Park, Chang-Soo
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2009.02a
    • /
    • pp.307-308
    • /
    • 2009
  • To reduce delay for high priority packets in the ring-based EPON, the EPON packet classifier groups services as their priorities and frames for services are dynamically framed as their priorities. Since dynamic framing for a packet priority dynamically changes assignment spaces in the maximum framing packet size as network traffics, it makes services with high priority to improve quality of services with relative low threshold time for transmitting.

  • PDF

An Efficient TCP Buffer Tuning Algorithm based on Packet Loss Ratio(TBT-PLR) (패킷 손실률에 기반한 효율적인 TCP Buffer Tuning 알고리즘)

  • Yoo Gi-Chul;Kim Dong-kyun
    • The KIPS Transactions:PartC
    • /
    • v.12C no.1 s.97
    • /
    • pp.121-128
    • /
    • 2005
  • Tho existing TCP(Transmission Control Protocol) is known to be unsuitable for a network with the characteristics of high RDP(Bandwidth-Delay Product) because of the fixed small or large buffer size at the TCP sender and receiver. Thus, some trial cases of adjusting the buffer sizes automatically with respect to network condition have been proposed to improve the end-to-end TCP throughput. ATBT(Automatic TCP fluffer Tuning) attempts to assure the buffer size of TCP sender according to its current congestion window size but the ATBT assumes that the buffer size of TCP receiver is maximum value that operating system defines. In DRS(Dynamic Right Sizing), by estimating the TCP arrival data of two times the amount TCP data received previously, the TCP receiver simply reserves the buffer size for the next arrival, accordingly. However, we do not need to reserve exactly two times of buffer size because of the possibility of TCP segment loss. We propose an efficient TCP buffer tuning technique(called TBT-PLR: TCP buffer tuning algorithm based on packet loss ratio) since we adopt the ATBT mechanism and the TBT-PLR mechanism for the TCP sender and the TCP receiver, respectively. For the purpose of testing the actual TCP performance, we implemented our TBT-PLR by modifying the linux kernel version 2.4.18 and evaluated the TCP performance by comparing TBT-PLR with the TCP schemes of the fixed buffer size. As a result, more balanced usage among TCP connections was obtained.

An Advanced Resource Allocation Algorithm for PON-LTE Converged Networks

  • Abhishek Gaur;Vibhakar Shrimali
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.16-22
    • /
    • 2023
  • Enhanced radio access technologies (RAT) are deployed in Next Generation Convergence Networks by the service providers so as to satisfy the basic requirements of end-users for e.g. QoS. Whenever the available resources are being shared simultaneously and dynamically by multiple users or distribution of allocated channels randomly, the deficiency of spectral resources and dynamic behavior of Network traffic in real time Networking, we may have problem. In order to evaluate the performance of our proposed algorithm, computer simulation has been performed on NS-2 simulator and a comparison with the existing algorithms has been made.

Optimal Routing Path Selection Algorithm in Ad-hoc Wireless Sensor Network (Ad-hoc 센서 네트워크를 위한 최적 라우팅 경로 설정 알고리즘)

  • Jang In-Hun;Sim Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.6
    • /
    • pp.736-741
    • /
    • 2005
  • The highly popular algorithm to determine routing path for the multi-hopping wireless sensor network is DSR(Dynamic Source Routing), which is one of the Demand-Driven way to makes the route only when there is a request for sending data. However, because DSR attaches the route's record on the sending packet, the bigger number of sensor node is, the heavier packet in DSR becomes. In this paper, we try to propose the new optimal routing path selecting algorithm which does not make the size of packet bigger by using proper routing table even though the number of sensor node increases, and we try to show our algorithm is more stable and reliable because it is based on the cost function considering some network resources of each sensor node such as power consumption, mobility, traffic in network, distance(hop) between source and destination.

The case study for Implementation and verification of Dynamic NAT and PAT (동적 NAT과 PAT의 구현과 검증 사례연구)

  • Kim, No-Whan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.10
    • /
    • pp.1131-1138
    • /
    • 2015
  • As the size of the internet market grows rapidly, the number of IPv4 addresses available is being exhausted, while transition to IPv6 is being delayed. As the best alternative solution, Network Address Translation(NAT) scheme is being used. It connects the public internet network with the private internet network in order to reduce the waste of IPv4 addresses space. The purpose of this paper is to study the effective example of network based on common virtual network using Packet Tracer with topology designed rather than usual theoretical approach in Dynamic NAT and PAT, which allows more efficient use of address space.

Uplink Congestion Control over Asymmetric Networks using Dynamic Segment Size Control (비대칭 망에서 동적 세그먼트 크기 조정을 통한 상향링크 혼잡제어)

  • Je, Jung-Kwang;Lee, Ji-Hyun;Lim, Kyung-Shik
    • Journal of KIISE:Information Networking
    • /
    • v.34 no.6
    • /
    • pp.466-474
    • /
    • 2007
  • Asymmetric networks that the downlink bandwidth is larger than the uplink bandwidth may cause the degradation of the TCP performance due to the uplink congestion. In order to solve this problem, this paper designs and implements the Dynamic Segment Size Control mechanism which offers a suitable segment size for current networks. The proposed mechanism does not require any changes in customer premises but suppress the number of ACKs using segment reassembly technique to avoid the uplink congestion. The gateway which adapted the Dynamic Segment Size Control mechanism, detects the uplink congestion condition and dynamically measures the bandwidth asymmetric ratio and the packet loss ratio. The gateway reassembles some of segments received from the server into a large segment and transmits it to the client. This reduces the number of corresponding ACKs. In this mechanism, the SACK option is used when occurs the bit error during the transmission. Based on the simulation in the GEO satellite network environment, we analyzed the performance of the Dynamic Segment Size Control mechanism.

The System Performance of Wireless CSMA/CA Protocol with Capture Effect

  • Dai, Jiang-Whai
    • Journal of Communications and Networks
    • /
    • v.6 no.3
    • /
    • pp.226-234
    • /
    • 2004
  • This work presents a deterministic channel that rules according to inverse a power propagation law. The proposed channel model allows us to derive the lower bound and upper bound of packet's capture probability in Rayleigh fading and shadowing cellular mobile system. According to these capture probabilities, we analyze the system performance in the case of finite stations and finite communicated coverage of a base station. We also adopted a dynamic backoff window size to discuss the robustness of IEEE 802.11 draft standard. Some suggestions and conclusions from numerical results are given to establish the more strong CSMA/CA protocol.

Dynamic Adjustment of Ad hoc Traffic Indication Map(ATIM) window to save Power in IEEE 802.11 DCF

  • Nam, Jae-Hyun
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.3
    • /
    • pp.343-347
    • /
    • 2008
  • Wakeup schemes that turn off sensors' radio when communication is not necessary have great potential in energy saving. At the start of each beacon interval in the IEEE 802.11 power saving mode specified for DCF, each node periodically wakes up for duration called the ATIM Window. However, in the power saving mechanism specified in IEEE 802.11, all nodes use the same ATIM window size. Since the ATIM window size critically affects throughput and energy consumption, a fixed ATIM window does not perform well in all situations. This paper proposes an adaptive mechanism to dynamically choose an ATIM window size according to network condition. Simulation results show that the proposed scheme outperforms the IEEE 802.11 power saving mechanism in terms of the amount of power consumed and the packet delivery ratio.

Techniques for Efficient Reading of Semi-Passive Sensor Tag Data (반수동형 센서 태그 데이터의 효율적인 읽기 기법)

  • Kim, Soo-Han;Ryu, Woo-Seok;Hong, Bong-Hee
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.3
    • /
    • pp.34-41
    • /
    • 2009
  • This paper investigates the issue of efficient reading for sensor data of semi-passive sensor tag. The Cold Chain management system requires complete sensor data without data loss and the short processing time of reading sensor tag data. However, reading the sensed data could be interfered by RF environment such as a jamming, obstacle and so on. This study found that it could lead to loss of the sensed data and takes much time to read it when data loss is occurred. To solve this problem, we propose the transaction processing mechanism that guarantees efficient reading of the sensed data. To do this, we present the technique of dynamic packet size and technique of data recovery to execute read transaction. These techniques improve the reliability of reading operation as well as speed up of read process for the large capacity data. This paper contributes to the improvement of efficient reading of sensed data without any loss of data and large time required.

Dynamic Buffer Allocation for Seamless IPTV Service Considering Handover Time and Jitter (이동망에서 IPTV 서비스 제공 시 핸드오버 시간과 지터를 고려한 동적 버퍼 할당 기법)

  • Oh, Jun-Seok;Lee, Ji-Hyun;Lim, Kyung-Shik
    • The KIPS Transactions:PartC
    • /
    • v.15C no.5
    • /
    • pp.391-398
    • /
    • 2008
  • To provide IPTV service over mobile networks, the mechanism that reduce packet loss and interrupt of multimedia service during the handover should be supported. Especially, buffering based mechanism is preferable for supporting IPTV services in the way of preserving streaming service using stored data and recovering non-received data after handover. But previous research doesn't consider the buffer allocation for applying various environments which can change handover time or end to end delay of relay node. This paper propose DBAHAJ mechanism that optimize buffer size of mobile nodes and relay node for supporting seamless IPTV service over mobile environments. Mobile node determines buffer size by checking handover time and maximum difference of sequence to keep playing video data. And multicast agent recovers packet loss during the handover by sending buffered data. By these two procedure, node supports seamless IPTV service on mobile networks. We confirm performance of this mechanism on NS-2 simulator.