• Title/Summary/Keyword: dynamic movement

Search Result 967, Processing Time 0.035 seconds

Verification and Validation of Dynamic Clearance in Digital Mockup Using Engine Movement Roll Data (엔진 거동을 고려한 DMU(Digital Mockup)에서의 다이나믹 간격 검증)

  • Kim, Yong-Suk;Jang, Dong-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.56-61
    • /
    • 2010
  • This paper presents dynamic clearance verification considering engine movement for vehicle engine room package and validates through physical vehicle test. Traditionally, static clearance guide has been used for engine room package, but it's only 2-dimension criteria that results in requiring unnecessary space and it's not possible to conduct engine movement with real driving conditions. Thus, the dynamic DMU considers engine movement based on 28 load cases that are Roll Data analyzed by CAE for maximum engine movement and visualizes part-to-part dynamic clearance into virtual space. The dynamic DMU enables to develop compact engine room package without unnecessary space. The result of comparison between simulation and physical test has 0.892 correlation coefficient.

Hybrid HMM for Transitional Gesture Classification in Thai Sign Language Translation

  • Jaruwanawat, Arunee;Chotikakamthorn, Nopporn;Werapan, Worawit
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1106-1110
    • /
    • 2004
  • A human sign language is generally composed of both static and dynamic gestures. Each gesture is represented by a hand shape, its position, and hand movement (for a dynamic gesture). One of the problems found in automated sign language translation is on segmenting a hand movement that is part of a transitional movement from one hand gesture to another. This transitional gesture conveys no meaning, but serves as a connecting period between two consecutive gestures. Based on the observation that many dynamic gestures as appeared in Thai sign language dictionary are of quasi-periodic nature, a method was developed to differentiate between a (meaningful) dynamic gesture and a transitional movement. However, there are some meaningful dynamic gestures that are of non-periodic nature. Those gestures cannot be distinguished from a transitional movement by using the signal quasi-periodicity. This paper proposes a hybrid method using a combination of the periodicity-based gesture segmentation method with a HMM-based gesture classifier. The HMM classifier is used here to detect dynamic signs of non-periodic nature. Combined with the periodic-based gesture segmentation method, this hybrid scheme can be used to identify segments of a transitional movement. In addition, due to the use of quasi-periodic nature of many dynamic sign gestures, dimensionality of the HMM part of the proposed method is significantly reduced, resulting in computational saving as compared with a standard HMM-based method. Through experiment with real measurement, the proposed method's recognition performance is reported.

  • PDF

Comparative Analysis of Dynamic Moisture Movement Testers

  • Lee, Duck-Weon;Shim, Woo-Sub;Lim, Ho-Sun
    • Journal of Fashion Business
    • /
    • v.15 no.6
    • /
    • pp.40-55
    • /
    • 2011
  • The purpose of this research is to review testing principle, testing design and experimental results of the four dynamic moisture movement testers. The research analyzes Moisture Manager Tester (MMT), Alambeta Instrument, Dynamic Surface Moisture Movement Tester, and Gravimetric Absorbent Testing Method based on American Society for Testing and Material (ASTM) E 96 which is an international standard testing method. Although many of researches use ASTM E 96 to measure moisture movement on a fabric, it has several weaknesses, such as long experimental time and a physical change of sample by a holder of the frame. Hence, lots of researchers have studied and developed the new measurement systems measuring moisture management on a fabric or garment and ultimately mimic heat energy and perspiration created by the human body. These moisture management systems use a variety of parameters, such as electricity, color, and sensor to measure their movement in the fabric. Through comparison with the existing tester (ASTM E 96), the research recognizes the strength and weakness in the dynamic moisture movement testers.

Study of quake wavelength of dynamic movement with posture

  • Kim, Jeong-lae;Hwang, Kyu-sung
    • International journal of advanced smart convergence
    • /
    • v.4 no.1
    • /
    • pp.99-103
    • /
    • 2015
  • Quake wavelength technique was designed of the sway by the body. There was presented a concept of the dangle wavelength by twisting condition of posture. We compared to the twisting condition for an average variation and maximum variation with the movement. There was used a combination system and correlation system of the posture. Their correlation signal was presented a control data by the dynamic movement. The quake wavelength system was to be formation of activity aspects by posture. The correlation of wavelength technique was applied to the a little action of posture variation signal. Quake wavelength by the dynamic movement was determined to a variation of vision condition of the $Vi-{\alpha}_{AVG}$ with $(-1.27){\pm}(-0.34)$ units, that vestibular condition of the $Ve-{\alpha}_{AVG}$ with $(-0.49){\pm}(-0.4)$ units, that somatosensory condition of the $So-{\alpha}_{AVG}$ with $0.037{\pm}0.269$ units, that CNS condition of the $C-{\alpha}_{AVG}$ with $(-0.049){\pm}0.015$ units. As the study of the quake wavelength technique was depended on the action system of body movement that a maximum and averag values was used a movement of combination data. The system was required an action signal for the form of actual signal on the basis of a little movement condition in the body. The human action systemwas compared to maximum and average from the movement derived the body. Therefore, their system was controlled to evaluate posture condition for the body correlation.

An Analysis of Dynamic Conditional Correlation among International Carbon Emission Trading Prices (국제 탄소배출권 가격의 동태적 조건부 상관관계 분석)

  • Dan-Dan Luo;Yin-Hua Li
    • Korea Trade Review
    • /
    • v.47 no.1
    • /
    • pp.99-114
    • /
    • 2022
  • This paper analyzed the dynamic conditional correlation between the carbon emission trading prices of Korea, China, EU, New Zealand. This paper was analyzed using the daily data of carbon emission trading prices of each country from January 12, 2015 to January 13, 2021 using the DCC-GARCH model. Summarizing the research results, first, the dynamic conditional correlation between carbon emission trading prices in the EU, Korea, and China, excluding New Zealand, was strong, indicating that there was a co-movement phenomenon. Second, it was found that carbon emission trading prices in major countries have a stronger tendency to co-movement due to global shocks. Third, it appears that the dynamic conditional correlation between the carbon emission trading prices of Korea and China is gradually strengthening. This study confirmed that the co-movement between carbon emission trading prices in Korea and other countries gradually intensified as time passed. In particular, it is meaningful in suggesting the implication that the phenomenon of co-movement between carbon emission trading prices in Korea and China is gradually intensifying.

Imitation Learning of Bimanual Manipulation Skills Considering Both Position and Force Trajectory (힘과 위치를 동시에 고려한 양팔 물체 조작 솜씨의 모방학습)

  • Kwon, Woo Young;Ha, Daegeun;Suh, Il Hong
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.1
    • /
    • pp.20-28
    • /
    • 2013
  • Large workspace and strong grasping force are required when a robot manipulates big and/or heavy objects. In that situation, bimanual manipulation is more useful than unimanual manipulation. However, the control of both hands to manipulate an object requires a more complex model compared to unimanual manipulation. Learning by human demonstration is a useful technique for a robot to learn a model. In this paper, we propose an imitation learning method of bimanual object manipulation by human demonstrations. For robust imitation of bimanual object manipulation, movement trajectories of two hands are encoded as a movement trajectory of the object and a force trajectory to grasp the object. The movement trajectory of the object is modeled by using the framework of dynamic movement primitives, which represent demonstrated movements with a set of goal-directed dynamic equations. The force trajectory to grasp an object is also modeled as a dynamic equation with an adjustable force term. These equations have an adjustable force term, where locally weighted regression and multiple linear regression methods are employed, to imitate complex non-linear movements of human demonstrations. In order to show the effectiveness our proposed method, a movement skill of pick-and-place in simulation environment is shown.

Effects of Ankle Self-Mobilization with Movement Intervention on Ankle Dorsiflexion Passive Range of Motion, Timed Up and Go Test, and Dynamic Gait Index in Patients with Chronic Stroke

  • Park, Donghwan
    • Physical Therapy Rehabilitation Science
    • /
    • v.10 no.3
    • /
    • pp.257-262
    • /
    • 2021
  • Objective: Patients with stroke generally diminished ankle range of motion, which decreases balance and walking ability. This study aimed to determine the effect of ankle self-mobilization with movement (s-MWM) on ankle dorsiflexion passive range of motion, timed up and go test, and dynamic gait index in patients with chronic stroke. Design: Randomized controlled trial design Methods: Twenty-four post-stroke patients participated in this study. The participants were randomized into the control (n = 12) and self-MWM groups (n = 12). Both groups attended standard rehabilitation therapy for 30 minutes per session. In addition, self-MWM group was performed 3 times per week for 8 weeks. All participants have measured ankle dorsiflexion passive range of motion, timed up and go test, and dynamic gait index in before and after the intervention. Results: After 8 weeks of training, self-MWM group showed greater improvement in ankle dorsiflexion passive range of motion, timed up and go test, and dynamic gait index than in the control group (p<0.05). Further, self-MWM group had significantly improvement in all dependent variables compared to the pre-test (p<0.05). Conclusions: Our investigation demonstrates that self-MWM is beneficial for improving functional ability. Also, self-MWM was superior to control with respect to improving ankle dorsiflexion passive range of motion, timed up and go test, and dynamic gait index.

Vibration Analysis on the Ground by 2D FEM (2차원 유한요소법을 이용한 지반의 진동에 대한 동적응답해석)

  • 황성춘;박춘식;정성교
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.365-370
    • /
    • 1999
  • In this paper, dynamic response analysis on the ground movement applied traffic load by 2D finite element procedure has been studied. In particular, The paper deal with pointing acceleration method that applied AFIMEX Code as like 2D-FLUSH using equivalent linear method. As the result, it is found that dynamic response analysis by pointing acceleration method expressed ground movement by traffic load exactly.

  • PDF

Tension/Movement Control of Working Robot and Dynamic Model of the Stringing Wire Cable (가설 와이어 케이블 동적모델과 작업로봇의 장력/이동 제어)

  • Hong, Jeng-Pyo;Kim, Yoon-Sik;Lee, Sung-Geun;Hong, Soon-Ill
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.118-125
    • /
    • 2012
  • In this paper, an approach to designing controllers for the tension/movement control of working robot to install a stringing wire cable is presented. To design a controller, when the robot moves a certain distance maintaining constant tension, the dynamic model of a stringing wire cable which considers effects of weights according to changing lengths is presented. Also the tension at startup of the working robot is studied by numerical analysis which is based on the equation of the dynamic wire model. From the dynamic model for a stringing wire cable, working robot for tension/movement control is suggested and designed a feedforward controller with a accelerator gain to suppress a mutual interference of the both tasks of tension/movement control. Depending on the operating conditions of the working robot, the effectiveness of the suggested system has been verified by the simulation and experimental results.

The Effects of Eye Health and Dynamic Visual Activity on Eye Movement in University Students (안구운동이 대학생의 눈 건강과 동체시력에 미치는 영향)

  • Kim, Ju-Hyun
    • Journal of Korea Entertainment Industry Association
    • /
    • v.14 no.6
    • /
    • pp.191-199
    • /
    • 2020
  • Younger generations use a variety of visual media, such as smartphones, televisions, and computers. Due to the development of visual media, the health of eye was weakening. Therefore, this study aimed to investigate the effects of eye health and dynamic visual activity on eye muscle stimulation with eye movement and therapeutic massage in university students. 38 university students in their 20s were divided into a control group(18) and an experimental group(20). The experimental group performed eye movement and therapeutic massage every 30 minutes for 5 times a week for 4 weeks. Ocular fatigue, maximal blinking interval, ocular surface temperature, and dynamic visual activity were measured before and after 4 weeks. Ocular fatigue was decreased significantly after 4 weeks (p<.05), and maximal blinking interval was increased significantly after 4 weeks (p<.05). Ocular surface temperature was not showed a significant difference after 4 weeks (p>.05), and dynamic visual activity was increased significantly after 4 weeks (p<.05). Therefore, eye movement and therapeutic massage are recommended for the improvement of eye function and eye health. It is expected to be used as research data to restore and prevent for eye health.