• Title/Summary/Keyword: dynamic model test

Search Result 1,710, Processing Time 0.034 seconds

Prediction of Penetration Rate of Sheet Pile Using Modified Ramberg-Osgood Model (수정 Ramberg-Osgood 모델을 이용한 널말뚝의 관입속도 예측)

  • Lee, Seung-Hyun;Kim, Byoung-Il;Kim, Zu-Cheol;Kim, Jeong-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.1
    • /
    • pp.55-62
    • /
    • 2010
  • Dynamic soil resistances were simulated by modified Ramberg-Osgood model in order to predict penetration rate of sheet pile installed by vibratory pile driver. Various factors which characterize modified Ramberg-Osgood model were determined considering the shapes of dynamic soil resistance curves obtained from field test and standard penetration value (N value) was used as parameter that relates field test results to the suggested model. Penetration rates calculated by analytical model were smaller than those of field test and penetration times were vice versa. Therefore, predicted penetration rate and penetration time by analytical model are more conservative than those of filed test.

A Study on the Model Test for Estimating Dynamic Vertical Load Added to Shallow Foundation for Machine (진동기 얕은기초에 추가되는 동적 연직하중 산정을 위한 모형실험 방안 연구)

  • Ha, Ik-Soo;Yoo, Mintaek
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.11
    • /
    • pp.157-165
    • /
    • 2020
  • At present, there are no clearly stated criteria or theories in calculating additional vertical dynamic loads that occur at the machine foundation due to vibration and reflecting them in the design at home and abroad. According to the domestic standard, although it is not a serious vibration condition, the additional dynamic load due to vibration is considered up to 100% of the static load. This is an extremely conservative design. The purpose of this study is to propose a model test method for evaluating the quantitative magnitude of additional dynamic loads that are generated at certain static loads due to vertical mechanical vibrations. As preliminary basic tests for the model tests, the test for evaluating the effects of reflective wave that may occur within a limited size soil box and the test for estimating the natural frequency of the devised model soil-foundation system were carried out. From the analysis of results for basic tests, a method to minimize the influence of the reflected wave was prepared, and the effect of the resonance of the model system was minimized during the model tests. After the basic tests, the main model tests were conducted. Through the proposed main test, the quantitative magnitude of additional dynamic loads caused by machine vibration on a shallow foundation for machine on medium dense sand foundations were evaluated. From the results of the model test, the feasibility of design applied at home and abroad was reviewed.

On the Large Eddy Simulation of Scalar Transport with Prandtl Number up to 10 Using Dynamic Mixed Model

  • Na Yang
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.913-923
    • /
    • 2005
  • The dynamic mixed model (DMM) combined with a box filter of Zang et. al. (1993) has been generalized for passive scalar transport and applied to large eddy simulation of turbulent channel flows with Prandtl number up to 10. Results from a priori test showed that DMM is capable of predicting both subgrid-scale (SGS) scalar flux and dissipation rather accurately for the Prandtl numbers considered. This would suggest that the favorable feature of DMM, originally developed for the velocity field, works equally well for scalar transport problem. The validity of the DMM has also been tested a posteriori. The results of the large eddy simulation showed that DMM is superior to the dynamic Smagorinsky model in the prediction of scalar field and the model performance of DMM depends to a lesser degree on the ratio of test to grid filter widths, unlike in the a priori test.

Characteristics and Dynamic Modeling of MR Damper for Semi-active Vibration Control (준능동 진동 제어를 위한 MR 감쇠기의 동적 모델링을 통한 특성분석)

  • Heo, Gwang-Hee;Jeon, Seung-Gon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.6
    • /
    • pp.61-69
    • /
    • 2013
  • This research is aimed to evaluate characteristics and dynamic modeling of MR damper for semi-active vibration control. A MR damper of semi-active type was designed and made for the purpose of controlling the vibration of a real-size model structure. Usually a semi-active control system equipped with a MR damper requires a dynamic model which expresses numerical data about the damping capacity and dynamic characteristics generated by a MR damper. To fulfil the requirement, a Power model and a Bingham model were particularly employed among many dynamic models of MR damper. Those models being contrasted with other ones, a dynamic test was carried out on the developed MR damper. In the test, excitation frequencies were conditioned to be 0.15 Hz, 1.0 Hz, and 2.0 Hz, and three different currents were adopted for each frequency. From these test results, it was found that displacement affected control capacity of the MR damper. The test results led to the identification of model variables for each dynamic model, on the basis of which a force-speed relation curve and expected damping force were derived and contrasted to those of the developed MR damper. Therefore, it was proven that the MR damper designed and made in this research was effective as a semi-active controller, and also that displacement of 2mm at minimum was found to be secured for vibration control, through the test using various displacements.

A Study on the Step Response Model Development of a Dynamic Matrix Control(DMC) For Boiler-Turbine Systems in a Fossil Power Plant (화력발전 보일러-터빈 시스템을 위한 Dynamic Matrix Control(DMC)의 계단응답모델 선정에 관한 연구)

  • Moon, Un-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.5
    • /
    • pp.125-133
    • /
    • 2006
  • This paper presents comparison results of Step Response Model of Dynamic Matrix Control(DMC) for a drum-type boiler-turbine system of a fossil power plant. Two possible kinds of step response models are investigated in designing the DMC, one is developed with the linearization of theoretical model and the other is developed with the process step-test data. Then, the control performances of each model-based DMC are simulated and evaluated. It is observed that the simulation results with the step-response model based on the test data show satisfactory results, while the linearized model is not suitable for the control of boiler-turbine system.

A large-scale test of reinforced soil railway embankment with soilbag facing under dynamic loading

  • Liu, Huabei;Yang, Guangqing;Wang, He;Xiong, Baolin
    • Geomechanics and Engineering
    • /
    • v.12 no.4
    • /
    • pp.579-593
    • /
    • 2017
  • Geosynthetic reinforced soil retaining walls can be employed as railway embankments to carry large static and dynamic train loads, but very few studies can be found in the literature that investigate their dynamic behavior under simulated wheel loading. A large-scale dynamic test on a reinforced soil railway embankment was therefore carried out. The model embankment was 1.65 meter high and designed to have a soilbag facing. It was reinforced with HDPE geogrid layers at a vertical spacing of 0.3 m and a length of 2 m. The dynamic test consisted of 1.2 million cycles of harmonic dynamic loading with three different load levels and four different exciting frequencies. Before the dynamic loading test, a static test was also carried out to understand the general behavior of the embankment behavior. The study indicated the importance of loading frequency on the dynamic response of reinforced soil railway embankment. It also showed that toe resistance played a significant role in the dynamic behavior of the embankment. Some limitations of the test were also discussed.

Structural identification and seismic performance of brick chimneys, Tokoname, Japan

  • Aoki, T.;Sabia, D.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.5
    • /
    • pp.553-570
    • /
    • 2005
  • Dynamic and static analyses of existing structures are very important to obtain reliable information relating to actual structural properties. For this purpose a series of material test, dynamic test and static collapse test of the existing two brick chimneys, in Tokoname, are carried out. From the material tests, Young's modulus and compressive strength of the brick used for these chimneys are estimated to be 3200 MPa and 7.5 MPa, respectively. The results of static collapse test of the existing two brick chimneys are discussed in this paper and composed with the results from FEA (Finite Element analysis). From the results of dynamic tests, the fundamental frequencies of Howa and Iwata brick chimneys are estimated to be about 2.69 Hz and 2.93 Hz, respectively. Their natural modes are identified by ARMAV (Autoregressive Moving Average Vectors) model. On the basis of the static and dynamic experimental tests, a numerical model has been prepared. According to the European code (Eurocode n. 8: "Design of structures for earthquake resistance") non-linear static (Pushover) analysis of the two chimneys is carried out and they seem to be vulnerable to earthquakes with 0.25 to 0.35 g.

HILS(Hardware-In-the-Loop Simulation) Development of a Steering HILS System (전동식 동력 조향 장치 시험을 위한 HILS(Hardware-In-the-Loop Simulation) 시스템 개발)

  • 류제하;노기한;김종협;김희수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.105-111
    • /
    • 1999
  • The paper presents development of a Hardware-In-the-Loop simulation (HILS) system for the purpose of testing performance, stability, and reliability of an electronic power steering system(EPS). In order to realistically test an EPS by the proposed HILS apparatus, a simulated uniaxial dynamic rack force is applied physically to the EPS hardware by a pnumatic actuator. An EPS hardware is composed of steering wheel &column, a rack & pinion mechanism, andas motor-driven power steering system. A command signal for a pneumatic rack-force actuator is generated from the vehicle handling lumped parameter dynamic model 9software) that is simulated in real time by using a very fast digital signal processor. The inputs to the real-time vehicle dynamic simulation model are a constant vehicle forward speed and from wheel steering angles driven through a steering system by a driver. The output from a real-time simulation model is an electric signal that is proportional to the uniaxial rack force. The vehicle handling lumped parameter dynamic model is validated by a fully nonlinear constrained multibody vehicle dynamic model. The HILS system simulation results sow that the proposed HILS system may be used to realistically test the performance stability , and reliability of an electronic power steering system is a repeated way.

  • PDF

Modeling and verification of generator/control system of Seo-Inchon combined-cycle plant by load rejection test (부하차단시험에 의한 서인천복합화력 발전기.제어계의 모델링 및 검증)

  • 최경선;문영환;김동준;추진부;류승헌;권태원
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.4
    • /
    • pp.501-510
    • /
    • 1996
  • The gas-turbine generator of Seo-Incheon combined-cycle plant was tested for derivation of a model for dynamic analysis. Load rejection and AVR step test was performed to get the dynamic response of generator. The parameters of generator/control system model were determined by these measured data. No-load saturation test was performed for the saturation characteristics of the generator under steady state. V-curve test was also performed so as to find exact generator parameters. Q-axis parameters of generator was derived by measuring power angle. AVR and governor constants have been tuned by their oscillatory period and setting time characteristics. The derived parameters of generator control system is verified by one-machine infinite bus system simulation. (author). 7 refs., 20 figs., 5 tabs.

  • PDF

Verified 20-car Model of High-speed Train for Dynamic Response Analysis of Railway Bridges (검증된 고속철도 차량의 20량편성 정밀모형에 의한 철도교량의 동적응답 분석)

  • 최성락;이용선;김상효;김병석
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.4
    • /
    • pp.693-702
    • /
    • 2002
  • The aim of this study is to develop a 3-dimensional dynamic analysis model, capable of considering the interaction between vehicles and bridges more accurately. The dynamic analysis model is developed with the high-speed train (KTX) and a 2-span continuous prestressed concrete box girder bridge with a double track. The 20-car model is developed using the moving vehicle model for the regular trainset. Three-dimensional frame elements are used for the bridge model. Using the developed models, a dynamic behavior analysis program is coded. The analytical results are compared with the dynamic field test results and found to be valid to yield quite accurate dynamic responses. Based on the results of this study, the hybrid model, made up of the moving vehicle model for the heaviest power car and the moving force model for the other cars, is quite simple and effective without loosing the accuracy that much. Under the coincidence condition of two trains traveling with resonance velocity in the opposite directions, it is necessary to check not only the dynamic responses of the bridge with one-way traffic but those with two- way coincidence.