• Title/Summary/Keyword: dynamic modal analysis

Search Result 928, Processing Time 0.027 seconds

해상풍력터빈 트라이포드 지지구조물의 건전성 모니터링 기법 (Structural Health Monitoring Technique for Tripod Support Structure of Offshore Wind Turbine)

  • 이종원
    • 풍력에너지저널
    • /
    • 제9권4호
    • /
    • pp.16-23
    • /
    • 2018
  • A damage detection method for the tripod support structure of offshore wind turbines is presented for structural health monitoring. A finite element model of a prototype tripod support structure is established and the modal properties are calculated. The degree and location of the damage are estimated based on the neural network technique using the changes of natural frequencies and mode shape due to the damage. The stress distribution occurring in the support structure is obtained by a dynamic analysis for the wind turbine system to select the output data of the neural network. The natural frequencies and mode shapes for 36 possible damage scenarios were used for the input data of the learned neural network for damage assessment. The estimated damages agreed reasonably well with the accurate ones. The presented method could be effectively applied for damage detection and structural health monitoring of various types of support structures of offshore wind turbines.

컨테이너 하역작업 시 갠트리 크레인의 유연다물체 동역학 모델링 및 윤하중 해석 (Multi-flexible Dynamic Modeling and Wheel Load Analysis of a Rubber Tired Gantry Crane in Container Cargo Working)

  • 김정윤;김진곤
    • 한국전산구조공학회논문집
    • /
    • 제27권5호
    • /
    • pp.379-384
    • /
    • 2014
  • 본 논문은 갠트리 크레인의 설계를 위해 컨테이너 하역작업 시 특정하중 조건하의 RTGC(Rubber Tired Gantry Crane)의 동적거동과 그에 따른 윤하중을 분석한 내용을 기술하고 있다. 먼저 RTGC의 동적거동을 살펴보기 위해 거대 구조물인 크레인의 유한요소 모델을 개발하고 고유진동수와 고유모드의 모달시험결과를 이용하여 유한요소모델을 검증하였다. RTGC의 기타 부속품은 3차원 CAD모델링을 통해 다물체 동역학해석 소프트웨어인 ADAMS에서 강체로 모델링하였다. 본 연구에서 하중 조건은 일반적인 컨테이너의 이송조건(OP1)과 외부부하조건 없이 단순히 트롤리를 이용하여 컨테이너를 하역하는 2가지 경우로 고려하였다. 해석 결과 RTGC의 컨테이너 작업 시 발생하는 크레인의 진동은 거대 구조물의 강성과 변형에 주로 기인함을 확인하였으며 이러한 크레인의 진동은 RTGC의 움직임을 발생시켜 컨테이너 하역작업 불능 등의 거동을 발생시킬 수 있음을 분석할 수 있었다.

Dynamic Analysis and Design of Uncertain Systems Against Random Excitation Using probabilistic Method

  • Moon, Byung-Young;Kang, Beom-Soo;Park, Jung-Hyen
    • Journal of Mechanical Science and Technology
    • /
    • 제16권10호
    • /
    • pp.1229-1238
    • /
    • 2002
  • In this paper, a method to obtain the sensitivity of eigenvalues and the random responses of the structure with uncertain parameters is proposed. The concept of the proposed method is that the perturbed equation of each uncertain substructure is obtained using the finite element method, and the perturbed equation of the overall structure is obtained using the mode synthesis method. By this way, the reduced order perturbed equation of the uncertain system can be obtained. And the response of the uncertain system is obtained using probability method. As a numerical example, a simple piping system is considered as an example structure. The damping and spring constants of the support are considered as the uncertain parameters. Then the variations of the eigenvalues, the correlation function and the power spectral density function of the responses are calculated. As a result, the proposed method is considered to be useful technique to analyze the sensitivities of eigenvalues and random response against random excitation in terms of the accuracy and the calculation time.

The effects of uncertainties in structural analysis

  • Pellissetti, M.F.;SchueIler, G.I.
    • Structural Engineering and Mechanics
    • /
    • 제25권3호
    • /
    • pp.311-330
    • /
    • 2007
  • Model-based predictions of structural behavior are negatively affected by uncertainties of various type and in various stages of the structural analysis. The present paper focusses on dynamic analysis and addresses the effects of uncertainties concerning material and geometric parameters, mainly in the context of modal analysis of large-scale structures. Given the large number of uncertain parameters arising in this case, highly scalable simulation-based methods are adopted, which can deal with possibly thousands of uncertain parameters. In order to solve the reliability problem, i.e., the estimation of very small exceedance probabilities, an advanced simulation method called Line Sampling is used. In combination with an efficient algorithm for the estimation of the most important uncertain parameters, the method provides good estimates of the failure probability and enables one to quantify the error in the estimate. Another aspect here considered is the uncertainty quantification for closely-spaced eigenfrequencies. The solution here adopted represents each eigenfrequency as a weighted superposition of the full set of eigenfrequencies. In a case study performed with the FE model of a satellite it is shown that the effects of uncertain parameters can be very different in magnitude, depending on the considered response quantity. In particular, the uncertainty in the quantities of interest (eigenfrequencies) turns out to be mainly caused by very few of the uncertain parameters, which results in sharp estimates of the failure probabilities at low computational cost.

모드해석을 통한 마운트 공진회피 설계 (Design for Resonance Avoidance of Mount Through the Modal Analysis)

  • 이종명;유현탁;박규진;최현철;최병근
    • 한국소음진동공학회논문집
    • /
    • 제25권7호
    • /
    • pp.481-486
    • /
    • 2015
  • This paper provides how to solve the problems analytically and experimentally that occur for testing the water injection pump under development. First of all, water injection pump, based on shaft system dynamic analysis, is verified by measuring the behavior of the shaft system. After the water injection pump is measured, the structural resonances which can cause excessive noise, degradation the equipment life and malfunction are found. Therefore, by changing the structural design, the reso- nance should be avoided. Application of the design variables to the experimentally resonance avoid- ance is difficult. So analytically, with application of the design variables, the design will be changed with mode analysis using FEM.

기술논문 : 연성하중해석을 이용한 구조 최적화 기법 연구 (Technical Papers : Optimization Method of Structure by Using Coupled Load Analysis)

  • 이영신;김인걸;황도순
    • 한국항공우주학회지
    • /
    • 제30권1호
    • /
    • pp.132-138
    • /
    • 2002
  • 오늘날 여러 가지 측면에서 전략적으로 고성능의 위성 본체를 개발하는 것은 매우 중요하다. 본 연구에서는 부분구조합성법의 하나인 구속모드법을 이용한 연성하중해석 기법 및 모달 과도해석법을 사용하여 위성체 구조부재에 대한 최적화를 수행하였다. 제안된 방법은 초기 설계시, 일반적으로 사용되고 있는 준정적 하중을 이용하지 않고, 동종의 발사체에 대해 유사한 위성과의 연성하중해석 자료를 이용함으로써, 각 구조부재에 대해 보다 정확한 결과를 얻을 수 있는 장점이 있다. 예제를 통해 제안된 기법이 초기단계의 위성체 구조 부재의 효율적인 최적설계 및 중량 감소를 위해 적용될 수 있음을 확인하였다.

원전 격납 건물의 실시간 모니터링을 위한 강건한 최적 센서배치 연구 (A Study on Robust Optimal Sensor Placement for Real-time Monitoring of Containment Buildings in Nuclear Power Plants)

  • 이찬우;김유진;정형조
    • 한국전산구조공학회논문집
    • /
    • 제36권3호
    • /
    • pp.155-163
    • /
    • 2023
  • 원전 구조물의 실시간 모니터링 기술이 요구되고 있지만, 현재 운영 중인 지진 감시계통으로는 동특성 추출 등 시스템 식별이 제한된다. 전역적인 거동 데이터 및 동특성 추출을 위해서는 다수의 센서를 최적 배치하여야 한다. 최적 센서배치 연구는 많이 진행되어 왔지만 주로 토목, 기계 구조물이 대상이었으며 원전 구조물 대상으로 수행된 연구는 없었다. 원전 구조물은 미미한 신호대잡음비에도 강건한 신호를 획득하여야 하며, 모드 기여도가 저차 모드에 집중되어 있어 모드별 잡음 영향을 고려해야 하는 등 구조물 특성을 고려해야 한다. 이에 본 연구에서는 잡음에 대한 강건도와 모드별 영향을 평가할 수 있는 최적 센서배치 방법론을 제시하였다. 활용한 지표로서 auto MAC(Modal Assurance Criterion), cross MAC, 노드별 모드형상 분포를 분석하였으며, 잡음에 대한 강건도 평가의 적합성을 수치해석으로 검증하였다.

Multi-point earthquake response of the Bosphorus Bridge to site-specific ground motions

  • Bas, Selcuk;Apaydin, Nurdan Memisoglu;Harmandar, Ebru;Catbas, Necati
    • Steel and Composite Structures
    • /
    • 제26권2호
    • /
    • pp.197-211
    • /
    • 2018
  • The study presents the earthquake performance of the Bosphorus Bridge under multi-point earthquake excitation considering the spatially varying site-specific earthquake motions. The elaborate FE model of the bridge is firstly established depending on the new considerations of the used FEM software specifications, such as cable-sag effect, rigid link and gap elements. The modal analysis showed that singular modes of the deck and the tower were relatively effective in the dynamic behavior of the bridge due to higher total mass participation mass ratio of 80%. The parameters and requirements to be considered in simulation process are determined to generate the spatially varying site-specific ground motions. Total number of twelve simulated ground motions are defined for the multi-support earthquake analysis (Mp-sup). In order to easily implement multi-point earthquake excitation to the bridge, the practice-oriented procedure is summarized. The results demonstrated that the Mp-sup led to high increase in sectional forces of the critical components of the bridge, especially tower base section and tensile force of the main and back stay cables. A close relationship between the dynamic response and the behavior of the bridge under the Mp-sup was also obtained. Consequently, the outcomes from this study underscored the importance of the utilization of the multi-point earthquake analysis and the necessity of considering specifically generated earthquake motions for suspension bridges.

Determining minimum analysis conditions of scale ratio change to evaluate modal damping ratio in long-span bridge

  • Oh, Seungtaek;Lee, Hoyeop;Yhim, Sung-Soon;Lee, Hak-Eun;Chun, Nakhyun
    • Smart Structures and Systems
    • /
    • 제22권1호
    • /
    • pp.41-55
    • /
    • 2018
  • Damping ratio and frequency have influence on dynamic serviceability or instability such as vortex-induced vibration and displacement amplification due to earthquake and critical flutter velocity, and it is thus important to make determination of damping ratio and frequency accurate. As bridges are getting longer, small scale model test considering similitude law must be conducted to evaluate damping ratio and frequency. Analysis conditions modified by similitude law are applied to experimental test considering different scale ratios. Generally, Nyquist frequency condition based on natural frequency modified by similitude law has been used to determine sampling rate for different scale ratios, and total time length has been determined by users arbitrarily or by considering similitude law with respect to time for different scale ratios. However, Nyquist frequency condition is not suitable for multimode system with noisy signals. In addition, there is no specified criteria for determination of total time length. Those analysis conditions severely affect accuracy of damping ratio. The focus of this study is made on the determination of minimum analysis conditions for different scale ratios. Influence of signal to noise ratio is studied according to the level of noise level. Free initial value problem is proposed to resolve the condition that is difficult to know original initial value for free vibration. Ambient and free vibration tests were used to analyze the dynamic properties of a system using data collected from tests with a two degree-of-freedom section model and performed on full bridge 3D models of cable stayed bridges. The free decay is estimated with the stochastic subspace identification method that uses displacement data to measure damping ratios under noisy conditions, and the iterative least squares method that adopts low pass filtering and fourth order central differencing. Reasonable results were yielded in numerical and experimental tests.

Design and analysis of isolation effectiveness for three-dimensional base-seismic isolation of nuclear island building

  • Zhu, Xiuyun;Lin, Gao;Pan, Rong;Li, Jianbo
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.374-385
    • /
    • 2022
  • In order to investigate the application of 3D base-seismic isolation system in nuclear power plants (NPPs), comprehensive analysis of constitution and design theory for 3-dimensional combined isolation bearing (3D-CIB) was presented and derived. Four different vertical stiffness of 3D-CIB was designed to isolate the nuclear island (NI) building. This paper aimed at investigating the isolation effectiveness of 3D-CIB through modal analysis and dynamic time-history analysis. Numerical results in terms of dynamic response of 3D-CIB, relative displacement response, acceleration and floor response spectra (FRS) of the superstructure were compared to validate the reliability of 3D-CIB in mitigating seismic response. The results showed that 3D-CIB can significantly attenuate the horizontal acceleration response, and a fair amount of the vertical acceleration response reduction of the upper structure was still observed. 3D-CIB plays a significant role in reducing the horizontal and vertical FRS, the vertical FRS basically do not vary with the floor height. The smaller the vertical stiffness of 3D-CIB is, the better the vertical isolation effectiveness is, whereas, it will increase the displacement and the rocking effect of superstructure. Although the advantage of 3D-CIB is that the vertical stiffness can be flexibly adjusted, it should be designed by properly accounting for the balance between the isolation effectiveness and displacement control including rocking effect. The results of this study can provide the technical basis and guidance for the application of 3D-CIB to engineering structure.