• 제목/요약/키워드: dynamic modal analysis

검색결과 928건 처리시간 0.03초

Enhanced Authentication System Performance Based on Keystroke Dynamics using Classification algorithms

  • Salem, Asma;Sharieh, Ahmad;Sleit, Azzam;Jabri, Riad
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권8호
    • /
    • pp.4076-4092
    • /
    • 2019
  • Nowadays, most users access internet through mobile applications. The common way to authenticate users through websites forms is using passwords; while they are efficient procedures, they are subject to guessed or forgotten and many other problems. Additional multi modal authentication procedures are needed to improve the security. Behavioral authentication is a way to authenticate people based on their typing behavior. It is used as a second factor authentication technique beside the passwords that will strength the authentication effectively. Keystroke dynamic rhythm is one of these behavioral authentication methods. Keystroke dynamics relies on a combination of features that are extracted and processed from typing behavior of users on the touched screen and smart mobile users. This Research presents a novel analysis in the keystroke dynamic authentication field using two features categories: timing and no timing combined features. The proposed model achieved lower error rate of false acceptance rate with 0.1%, false rejection rate with 0.8%, and equal error rate with 0.45%. A comparison in the performance measures is also given for multiple datasets collected in purpose to this research.

On the measurement of the transient dynamics of the nanocomposites reinforced concrete systems as the main part of bridge construction

  • Shuzhen Chen;Hou Chang-ze;Gongxing Yan;M. Atif
    • Structural Engineering and Mechanics
    • /
    • 제90권4호
    • /
    • pp.417-428
    • /
    • 2024
  • Nanocomposite-reinforced concrete systems have gained increasing attention in bridge construction due to their enhanced mechanical properties and durability. Understanding the transient dynamics of these advanced materials is crucial for ensuring the structural integrity and performance of bridge infrastructure under dynamic loading conditions. This paper presents a comprehensive study of the measurement techniques employed for assessing the transient dynamics of nanocompositereinforced concrete systems in bridge construction applications. A numerical method, including modal analysis are discussed in detail, highlighting their advantages, limitations, and applications. Additionally, recent advancements in sensor technologies, data acquisition systems, and signal processing techniques for capturing and analyzing transient responses are explored. The paper also addresses challenges and opportunities in the measurement of transient dynamics, such as the characterization of nanocomposite-reinforced concrete materials, the development of accurate numerical models, and the integration of advanced sensing technologies into bridge monitoring systems. Through a critical review of existing literature and case studies, this paper aims to provide insights into best practices and future directions for the measurement of transient dynamics in nanocompositereinforced concrete systems, ultimately contributing to the design, construction, and maintenance of resilient and sustainable bridge infrastructure.

유한 길이 구조물과 무한 길이 도파관 구조물의 임피던스 연성을 이용한 진동 해석 (Vibration Analysis for Infinite Length Waveguide Structures Connected with Finite Length Structures Using Impedance Coupling)

  • 유정수;이재홍;홍진숙;신구균
    • 한국음향학회지
    • /
    • 제34권5호
    • /
    • pp.360-370
    • /
    • 2015
  • 무한 길이를 가진 도파관 구조물에 유한 길이를 가진 구조물이 결합되어 있는 경우, 결합된 구조물의 응답을 수치해석으로 구하기 위해서는 파동 방법과 모드 방법을 함께 적용하여 해석하는 것이 필요하다. 본 논문에서는 무한 길이 도파관구조물에 대해서는 파수유한요소법을, 유한 길이 구조물에 대해서는 유한요소법을 적용하여 결합 지점에서의 각 하부 구조물 임피던스 또는 모빌리티를 구하고 이를 연성하여 전체 구조물의 응답을 해석하는 방법에 대하여 다루었다. 해석 대상 구조물로는 내부에 사각 평판 구조물이 네 꼭지점에서 결합되어 있는 무한 길이 원통형 실린더를 선정하였으며, 네 결합지점이 강결합 또는 탄성마운트로 결합된 경우에 대하여 살펴보았다. 본 연구를 통해 임피던스 연성을 통한 파동 방법(파수유한요소법)과 모드 방법(유한요소법)의 결합이 적용 가능함을 확인하였다.

광섬유 브레그격자 센서를 이용한 풍력발전기 날개의 모드 해석 (Modal Analysis of Wind Turbine Blade Using Optical-Fiber Bragg-Grating Sensors)

  • 김창환;백인수;유능수;남윤수
    • 대한기계학회논문집B
    • /
    • 제35권5호
    • /
    • pp.513-516
    • /
    • 2011
  • 소형 풍력발전기 날개의 동적 거동에 대한 실험적 연구를 수행하였다. 날개를 따라 배열된 광 브레그 격자 (Fiber Bragg Grating) 센서를 이용하여 날개 표면에서의 변형률(strain)을 측정하였다. 충격 햄머 실험 (Impact Hammer Test)을 통하여, 1차 및 고차 모드의 공진주파수를 측정하였다. 광섬유 센서를 이용한 실험결과를 스트레인 게이지를 이용한 실험 결과와 비교한 결과 모드 주파수는 매우 유사하였다. 하지만, 광섬유 센서의 경우 스트레인 게이지에서 감지하지 못하는 모드를 감지할 수 있었다. 또한, 실험으로부터 얻은 변형률 모드를 이용하여 근사적으로 날개의 변위 모드를 추정하였다.

구조물 진동.소음의 수치해석시 최적 요소크기는 .lambda./4이다. (Optimum mesh size of the numerical analysis for structural vibration and noise prediction)

  • 김정태;강준수
    • 대한기계학회논문집A
    • /
    • 제21권11호
    • /
    • pp.1950-1956
    • /
    • 1997
  • An engineering goal in vibration and noise professionals is to develope quiet machines at the preliminary design stage, and various numerical techniques such as FEM, SEA or BEM are one of the schemes toward the goal. In this paper, the research has been focused on the sensitivity effect of mesh sizes for FEM application so that the optimum size of the mesh that leads to engineering solution within acceptable computing time could be generated. In order to evaluate the mesh size effect, three important parameters have been examined : natural frequencies, number of modes and driving point mobility. First, several lower modes including the fundamental frequency of a 2-D plate structure have been calculated as mesh size changes. Since theoretical values of natural frequencies for a simple structure are known, the deviation between the numerical and theoretical values is obtained as a function of mesh size. The result shows that the error is no longer decreased if the mesh size becomes a quarter wavelength or smaller than that. Second, the mesh size effect is also investigated for the number of modes. For the frequency band up to 1.4 kHz, the structure should have 38 modes in total. As the mesh size reaches to the quarter wavelength, the total count in modes approaches to the same values. Third, a mobility function at the driving point is compared between SEA and FEM result. In SEA application, the mobility function is determined by the modal density and the mass of the structure. It is independent of excitation frequencies. When the mobility function is calculated from a wavelength to one-tenth of it, the mobility becomes constant if the mesh becomes a quarter wavelength or smaller. We can conclude that dynamic parameters, such as eigenvalues, mode count, and mobility function, can be correctly estimated, while saving the computing burden, if a quarter wavelength (.lambda./4) mesh is used. Therefore, (.lambda./4) mesh is recommended in structural vibration analysis.

Estimation of liquid limit of cohesive soil using video-based vibration measurement

  • Matthew Sands;Evan Hayes;Soonkie Nam;Jinki Kim
    • Geomechanics and Engineering
    • /
    • 제33권2호
    • /
    • pp.175-182
    • /
    • 2023
  • In general, the design of structures and its construction processes are fundamentally dependent on their foundation and supporting ground. Thus, it is imperative to understand the behavior of the soil under certain stress and drainage conditions. As it is well known that certain characteristics and behaviors of soils with fines are highly dependent on water content, it is critical to accurately measure and identify the status of the soils in terms of water contents. Liquid limit is one of the important soil index properties to define such characteristics. However, liquid limit measurement can be affected by the proficiency of the operator. On the other hand, dynamic properties of soils are also necessary in many different applications and current testing methods often require special equipment in the laboratory, which is often expensive and sensitive to test conditions. In order to address these concerns and advance the state of the art, this study explores a novel method to determine the liquid limit of cohesive soil by employing video-based vibration analysis. In this research, the modal characteristics of cohesive soil columns are extracted from videos by utilizing phase-based motion estimation. By utilizing the proposed method that analyzes the optical flow in every pixel of the series of frames that effectively represents the motion of corresponding points of the soil specimen, the vibration characteristics of the entire soil specimen could be assessed in a non-contact and non-destructive manner. The experimental investigation results compared with the liquid limit determined by the standard method verify that the proposed method reliably and straightforwardly identifies the liquid limit of clay. It is envisioned that the proposed approach could be applied to measuring liquid limit of soil in practical field, entertaining its simple implementation that only requires a digital camera or even a smartphone without the need for special equipment that may be subject to the proficiency of the operator.

Effect of perforation patterns on the fundamental natural frequency of microsatellite structure

  • Ahmad M. Baiomy;M. Kassab;B.M. El-Sehily;R.M. El-Kady
    • Advances in aircraft and spacecraft science
    • /
    • 제10권3호
    • /
    • pp.223-243
    • /
    • 2023
  • There is a burgeoning demand for minimizing the mass of satellites because of its direct impact on reducing launch-to-orbit cost. This must be done without compromising the structure's efficiency. The present paper introduces a relatively low-cost and easily implementable approach for optimizing structural mass to a maximum natural frequency. The natural frequencies of the satellite are of utmost pertinence to the application requirements, as the sensitive electronic instrumentation and onboard computers should not be affected by the vibrations of the satellite structure. This methodology is applied to a realistic model of Al-Azhar University micro-satellite in partnership with the Egyptian Space Agency. The procedure used in structural design can be summarized in two steps. The first step is to select the most favorable primary structural configuration among several different candidate variants. The nominated variant is selected as the one scoring maximum relative dynamic stiffness. The second step is to use perforation patterns reduce the overall mass of structural elements in the selected variant without changing the weight. The results of the presented procedure demonstrate that the mass reduction percentage was found to be 39% when compared to the unperforated configuration that had the same plate thickness. The findings of this study challenge the commonly accepted notion that isogrid perforations are the most effective means of achieving the goal of reducing mass while maintaining stiffness. Rather, the study highlights the potential benefits of exploring a wider range of perforation unit cells during the design process. The study revealed that rectangular perforation patterns had the lowest efficiency in terms of modal stiffness, while triangular patterns resulted in the highest efficiency. These results suggest that there may be significant gains to be made by considering a broader range of perforation shapes and configurations in the design of lightweight structures.

고차진동모드의 영향을 고려한 층지진하중 (The Effect of Higher Vibration Modes on the Design Seismic Load)

  • 이동근;신용우
    • 전산구조공학
    • /
    • 제3권4호
    • /
    • pp.123-132
    • /
    • 1990
  • 일반적으로 구조물의 내진설계에 있어서는 등가정적해석법이 주로 사용되고 있다. 현재 사용되고 있는 등가정적해석법은 구조물의 거동이 주로 기본진동 모드에 의해 지배된다는 가정하에 유도되었으므로 기본진동 주기가 긴 구조물에 대해서는 구조물의 동적특성을 정확하게 예측하기가 어렵다. 본 연구에서는 구조물의 설계시 직접적인 영향을 미치게 되는 층전단력의 분포를 주요 관점으로하여 구조물의 동적특성에 미치는 고차모드의 영향을 정확히 고려할 수 있는 층지진하중에 대하여 연구했다. 층지진하중의 분포를 개선하기 위해 현행 내진설계 기준의 등가정적해석법에서 쓰이는 층지진하중과 모드해석을 이용하여 얻은 층지진하중의 차이를 파악하고 이로부터 고차모드의 영향이 고려된 층지진하중의 분포를 제안했다.

  • PDF

유연도 영향계수법을 이용한 접촉 결합부의 모델링 (Finite Element Modeling of Contact Joints by Flexibility Influence Coefficient)

  • 오제택;조성욱;이규봉
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.814-819
    • /
    • 2003
  • Machine tool design concepts have evolved towards high efficiency, accurate precision. high structural integrity, and multi-functional systems. Like many other structures, machine tools are also composed of many parts. When these parts are assembled, many kinds of joints are used. In the finite element analysis of these assembled structures, most joints are commonly considered as rigid joints. But, to get the more accurate solution, we need to model these joints in a appropriate manner. In this study, rational dynamic modeling and analysis method for complex structures are studied with special attention to slide way joints. For modeling of slide way joints, a general modeling technique is used by influence coefficients method which is applied to the conversion of detailed finite element model to the equivalent reduced joint model. The theoretical part of this method is illustrated and the method is applied to the structure with slide way joint. In this method. the non-linearity of the contact surfaces is considered within a proper range and the boundary effect of the joint model can be eliminated. The proposed method was applied to finite element modal analysis of a clamp jointed cantilever beam and slide way joints of the vertical type lathe. The method can also be used to other kinds of joint modeling. The results of these analysis were compared with those of Yoshimura models and rigid joint models. which demonstrated the practical applicability of the proposed method.

  • PDF

상용차용 SCR 머플러의 방사소음 개선에 관한 연구 (A Study on the Improvement of Radiated Noise in SCR Muffler of Commercial Vehicle)

  • 이동원;김완수;배철용;김찬중;권성진;이봉현
    • 한국소음진동공학회논문집
    • /
    • 제18권8호
    • /
    • pp.816-822
    • /
    • 2008
  • This study presents the design modification for SCR muffler of a commercial vehicle. Its main objective is the reduction of radiated noise at SCR muffler. For this study, the research of five steps were achieved by experimental and CAE analysis. First step is the measurement of radiated noise using impact-acoustic test. Second step is the source identification using experimental modal analysis. The cause of radiated noise source is confirmed by the resonance of end plates at SCR muffler. Third step confirms the possibility of resonance avoidance using SDM analysis applied the mass control. Fourth step is the suggestion of design modification which is the change of mode shape by CAE analysis. Last step is the verification of design modification using SYSNOISE analysis. Finally, the prototype product applied the countermeasure of resonance evasion was manufactured and the reduction of radiated noise at SCR muffler was confirmed by pass-by noise test.