• Title/Summary/Keyword: dynamic modal analysis

Search Result 933, Processing Time 0.031 seconds

Effect of soil pile structure interaction on dynamic characteristics of jacket type offshore platforms

  • Asgarian, Behrouz;Shokrgozar, Hamed Rahman;Shahcheraghi, Davoud;Ghasemzadeh, Hasan
    • Coupled systems mechanics
    • /
    • v.1 no.4
    • /
    • pp.381-395
    • /
    • 2012
  • Dynamic response of Pile Supported Structures is highly depended on Soil Pile Structure Interaction. In this paper, by comparison of experimental and numerical dynamic responses of a prototype jacket offshore platform for both hinge based and pile supported boundary conditions, effect of soil-pile-structure interaction on dynamic characteristics of this platform is studied. Jacket and deck of a prototype platform is installed on a hinge-based case first and then platform is installed on eight skirt piles embedded on continuum monolayer sand. Dynamic characteristics of platform in term of natural frequencies, mode shapes and modal damping are compared for both cases. Effects of adding and removing vertical bracing members in top bay of jacket on dynamic characteristics of platform for both boundary conditions are also studied. Numerical simulation of responses for the studied platform is also performed for both mentioned cases using capability of ABAQUS and SACS software. The 3D model using ABAQUS software is created using solid elements for soil and beam elements for jacket, deck and pile members. Mohr-Coulomb failure criterion and pile-soil interface element are used for considering nonlinear pile soil structure interaction. Simplified modeling of soil-pile-structure interaction effect is also studied using SACS software. It is observed that dynamic characteristics of the system changes significantly due to soil-pile-structure interaction. Meanwhile, both of complex and simplified (ABAQUS and SACS, respectively) models can predict this effect accurately for such platforms subjected to dynamic loading in small range of deformation.

Dynamic Characteristics of Hollow Core Slab by Vibraion Test and Modal Analysis (중공 슬래브의 가진실험과 모드해석을 통한 동특성 분석)

  • Kang, Kyoung-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.91-97
    • /
    • 2017
  • The purpose of this study is to get a more precise frequency of hollow core slabs by comparing the observed values from the actual free vibration tests and the predicted values based on the analysis model. The actual free vibration tests were carried out in the construction field using ${\Omega}$ shaped hollow core slabs. Modal analysis is conducted based on the analysis model that takes into account the differences in section properties due to void parts of slab. The differences between the predicted values based on the modal analysis with analysis model and the measured data from the actual tests range from 2~7%. This study demonstrates that the analysis model that incorporates void parts of slab could be used in evaluating serviceability of hollow core slabs with reasonable accuracies.

Structural and Dynamic Analysis of Three-Axis Road Simulator (3축 로드 시뮬레이터의 구조 및 동적 해석)

  • 황성호;김화진;박창수;최경락
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.105-111
    • /
    • 2003
  • The three-axis road simulator is the test equipment which can simulate the standardized road conditions for the durability evaluation of automotive components such as suspensions. The road load data are collected and acquired from a vehicle test, and then these data are used to simulate road load conditions by the road simulator which consists of hydraulic actuators, link mechanism and servo controller. The link mechanism must be designed in consideration of the dynamic effect and interference during three axes motions in order to generate accurate motions. In this paper, the structural and kinematic analysis of the link mechanism is performed, and these results can be used for developing the three-axis road simulator. The three-axis road simulator provides considerable savings in cost, development time, and testing risk during developing automotive components.

Vibration Analysis of Multi-Span Timoshenko Beams Due to Moving Loads (여러 스팬을 갖는 티모센코 보 구조물의 이동하중에 의한 진동 해석)

  • Hong, Seong-Uk;Kim, Jong-Uk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.11 s.170
    • /
    • pp.2058-2066
    • /
    • 1999
  • The present paper proposes a new dynamic analysis method for multi-span Timoshenko beam structures supported by joints with damping subject to moving loads. An exact dynamic element matrix method is adopted to model Timoshenko beam structures. A generalized modal analysis method is applied to derive response formulae for beam structures subject to moving loads. The proposed method offers an exact and closed form solution. Two numerical examples are provided for validating and illustrating the proposed method. In the first numerical example, a single span beam with multiple moving loads is considered. A dynamic analysis on a multi-span beam under a moving load is considered as the second example, in which the flexibility and damping of supporting joints are taken into account. The numerical study proves that the proposed method is useful for the vibration analysis of multi-span beam-hype structures by moving loads.

Dynamic Analysis of the High-Speed Spindle Structure for Machining Center (머시닝센터용 고속주축 구조물의 동특성 해석)

  • 송승훈;권오철;장낙영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.958-968
    • /
    • 1994
  • This paper presents a dynamic analysis of the high-speed spindle system for vertical machining center using finite techniques. The computed natural frequencies are compared with the measured frequencies obtained from experimental modal analysis. The results show that the bending and twisting deformations of the spindle housing dominate in the lowest modes owing to low dynamic stiffness of the housing structure. The design parameters in the analysis are : (a) panel thickness of the housing (b ) height of the housing, and (c) spindle-to-column distance of the housing. Through sensitivity analysis and optimizing simulation considering design constraints, an optimal design of the spindle system has been obtained.

  • PDF

Seismic safety assessment of eynel highway steel bridge using ambient vibration measurements

  • Altunisik, Ahmet Can;Bayraktar, Alemdar;Ozdemir, Hasan
    • Smart Structures and Systems
    • /
    • v.10 no.2
    • /
    • pp.131-154
    • /
    • 2012
  • In this paper, it is aimed to determine the seismic behaviour of highway bridges by nondestructive testing using ambient vibration measurements. Eynel Highway Bridge which has arch type structural system with a total length of 216 m and located in the Ayvaclk county of Samsun, Turkey is selected as an application. The bridge connects the villages which are separated with Suat U$\breve{g}$urlu Dam Lake. A three dimensional finite element model is first established for a highway bridge using project drawings and an analytical modal analysis is then performed to generate natural frequencies and mode shapes in the three orthogonal directions. The ambient vibration measurements are carried out on the bridge deck under natural excitation such as traffic, human walking and wind loads using Operational Modal Analysis. Sensitive seismic accelerometers are used to collect signals obtained from the experimental tests. To obtain experimental dynamic characteristics, two output-only system identification techniques are employed namely, Enhanced Frequency Domain Decomposition technique in the frequency domain and Stochastic Subspace Identification technique in time domain. Analytical and experimental dynamic characteristic are compared with each other and finite element model of the bridge is updated by changing of boundary conditions to reduce the differences between the results. It is demonstrated that the ambient vibration measurements are enough to identify the most significant modes of highway bridges. After finite element model updating, maximum differences between the natural frequencies are reduced averagely from 23% to 3%. The updated finite element model reflects the dynamic characteristics of the bridge better, and it can be used to predict the dynamic response under complex external forces. It is also helpful for further damage identification and health condition monitoring. Analytical model of the bridge before and after model updating is analyzed using 1992 Erzincan earthquake record to determine the seismic behaviour. It can be seen from the analysis results that displacements increase by the height of bridge columns and along to middle point of the deck and main arches. Bending moments have an increasing trend along to first and last 50 m and have a decreasing trend long to the middle of the main arches.

Experimenal Study of Dynamic Characteristics of Brace-Typed Dampers using Vibration-resistant Rubbers (방진용 고무를 이용한 가새형 감쇠기의 진동 특성에 관한 실험 연구)

  • 민경원;김진구;조한묵;이성경;호경찬
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.381-385
    • /
    • 1998
  • Vibration-resistant rubbers, whose elastic and shear behaviors are similar to viscoelastic materials, are used to make brace-typed dampers to reduce the building vibration. Experimental study is carried out to find the vibration characteristics of the dampers installed in the building model. The natural frequencies and modal damping ratios are obtained from the free vibration test and Fourier analysis. Analytical model of the modal strain energy method are used to find the viscoelastic characteristics of the brace-typed dampers from the experimental results. Finally shaking table test is performed to find the response behavior of the building model under earthquake loading. The present experimental study shows that the brace-typed dampers have the behavior of viscoelastic dampers, which increase the modal damping ratios and viscoelastic characteristics.

  • PDF

Automated identification of the modal parameters of a cable-stayed bridge: Influence of the wind conditions

  • Magalhaes, Filipe;Cunha, Alvaro
    • Smart Structures and Systems
    • /
    • v.17 no.3
    • /
    • pp.431-444
    • /
    • 2016
  • This paper was written in the context of a benchmark study promoted by The Hong Kong Polytechnic University using data samples collected in an instrumented cable-stayed bridge. The main goal of the benchmark test was to study the identification of the bridge modes of vibration under different wind conditions. In this contribution, the tools developed at ViBest/FEUP for automated data processing of setups collected by dynamic monitoring systems are presented and applied to the data made available in the context of the benchmark study. The applied tools are based on parametric output only modal identification methods combined with clustering algorithms. The obtained results demonstrate that the proposed algorithms succeeded to automatically identify the modes with relevant contribution for the bridge response under different wind conditions.

Modified Modal Method for Eigenderivative Analysis of Asymmetric Damped System (비대칭 감쇠 시스템의 고유진동수와 모드의 미분을 구하기 위한 모드법 의 개선)

  • 문영종;박선규;이인원
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.125-130
    • /
    • 2001
  • It is well known that many real systems have asymmetric mass, damping and stiffness matrices. In this case, the method for calculating eigenpair sensitivity is different from that of symmetric system. To determine the derivatives of the eigenpairs in asymmetric damped case, a modal method was recently developed by Adhikari. When a dynamic system has many degrees of freedom, only a few lower modes are available, and because the higher modes should be truncated to use the modal method, the errors may become significant. In this paper a procedure for determining the sensitivities of the eigenpairs of asymmetric damped system using a few lowest set of modes is proposed. Numerical examples show that proposed method achieves better calculating efficiency and highly accurate results when a few modes are used.

  • PDF

Responses and Modal Analyses of Micro Double Cantilever Beams Interacted by Elctrostatic Forces (정전기력을 받는 마이크로 이중 외팔 보의 응답 및 모드 해석)

  • Jung, Kang-Sik;Moon, Seung-Jae;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.2 s.95
    • /
    • pp.199-205
    • /
    • 2005
  • The governing equations of micro double cantilever beam structures interacted by electrostatic forces are obtained employing Galerkin's method based on Euler beam theory. Variations of static and dynamic responses as well as natural frequencies are estimated for applied voltages. In particular, it is investigated how the variations of beam properties resulted by manufacturing process influence the deflections and the modal characteristics. This study can help to design MEMS structures and to predict the performances with respect to manufacturing tolerances.