• Title/Summary/Keyword: dynamic mechanical properties.

Search Result 1,056, Processing Time 0.027 seconds

Study on the Oil Resistance, Morphological and Dynamic Mechanical Properties, Flame Retardance of Ethylene Vinyl Acetate Copolymer and Ethylene Propylene Rubber Compounds

  • Sung, Il Kyung;Lee, Won Ki;Park, Chan Young
    • Elastomers and Composites
    • /
    • v.52 no.1
    • /
    • pp.27-34
    • /
    • 2017
  • In this experiment, blends of ethylene vinyl acetate rubber (EVM) with a vinyl acetate (VA) content greater than 40 wt% and ethylene propylene rubber (EPM) were prepared by mechanical mixing; a number of parameters of the blends, including oil resistance, morphological and dynamic mechanical properties and flame retardancy, were subsequently measured. In the $100^{\circ}C$ oil resistance test, both the ammonium polyphosphate/dipentaerythritol/expandable graphite (APP/DPER/EG) and aluminum hydroxide (ATH) flame retardant systems showed an increase in volume change with increasing EPM content. For the ATH system, the dispersion shape was coarse and aggregation was observed. The results of a dynamic mechanical test showed slightly higher E' and E'' for the APP/DPER/EG flame retardant system when compared to the single ATH system. For both the APP/DPER/EG and ATH systems, the limited oxygen index (LOI) tests performed at increasing content of EPM showed a LOI value higher than 30, indicating excellent flame resistance.

Selection of polymer material in the design optimization of a new dynamic spinal implant

  • Monede-Hocquard, Lucie;Mesnard, Michel;Ramos, Antonio;Gille, Olivier
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.2 no.4
    • /
    • pp.237-248
    • /
    • 2015
  • "Dynamic stabilization" systems have been developed in recent years to treat degenerative disorders of the spinal column. In contrast to arthrodesis (fusion), the aim here is to conserve intervertebral mobility to maximize comfort. When developing innovative concepts, many mechanical tests need to be carried out in order to validate the different technological solutions. The present study focuses on the B Dyn$^{(R)}$ "dynamic stabilization" device (S14$^{(R)}$ Implants, Pessac, France), the aim being to optimize the choice of polymer material used for one of the implant's components. The device allows mobility but also limit the range of movement. The stiffness of the ring remains a key design factor, which has to be optimized. Phase one consisted of static tests on the implant, as a result of which a polyurethane (PU) was selected, material no.2 of the five elastomers tested. In phase two, dynamic tests were carried out. The fatigue resistance of the B Dyn$^{(R)}$ system was tested over five million cycles with the properties of the polymer elements being measured using dynamic mechanical analysis (DMA) after every million cycles. This analysis demonstrated changes in stiffness and in the damping factor which guided the choice of elastomer for the B Dyn$^{(R)}$ implant.

Dynamic stability of FG-CNT-reinforced viscoelastic micro cylindrical shells resting on nonhomogeneous orthotropic viscoelastic medium subjected to harmonic temperature distribution and 2D magnetic field

  • Tohidi, H.;Hosseini-Hashemi, S.H.;Maghsoudpour, A.;Etemadi, S.
    • Wind and Structures
    • /
    • v.25 no.2
    • /
    • pp.131-156
    • /
    • 2017
  • This paper deals with the dynamic stability of embedded functionally graded (FG)-carbon nanotubes (CNTs)-reinforced micro cylindrical shells. The structure is subjected to harmonic non-uniform temperature distribution and 2D magnetic field. The CNT reinforcement is either uniformly distributed or FG along the thickness direction where the effective properties of nano-composite structure are estimated through Mixture low. The viscoelastic properties of structure are captured based on the Kelvin-Voigt theory. The surrounding viscoelastic medium is considered nonhomogeneous with the spring, orthotropic shear and damper constants. The material properties of cylindrical shell and the viscoelastic medium constants are assumed temperature-dependent. The first order shear deformation theory (FSDT) or Mindlin theory in conjunction with Hamilton's principle is utilized for deriving the motion equations where the size effects are considered based on Eringen's nonlocal theory. Based on differential quadrature (DQ) and Bolotin methods, the dynamic instability region (DIR) of structure is obtained for different boundary conditions. The effects of different parameters such as volume percent and distribution type of CNTs, mode number, viscoelastic medium type, temperature, boundary conditions, magnetic field, nonlocal parameter and structural damping constant are shown on the DIR of system. Numerical results indicate that the FGX distribution of CNTs is better than other considered cases. In addition, considering structural damping of system reduces the resonance frequency.

Fabrication and Characterization of Carbon Nanotube/Carbon Fiber/Polycarbonate Multiscale Hybrid Composites

  • Cho, Beom-Gon;Hwang, Sang-Ha;Park, Young-Bin
    • Composites Research
    • /
    • v.29 no.5
    • /
    • pp.269-275
    • /
    • 2016
  • Multiscale hybrid composites, which consist of polymeric resins, microscale fibers and nanoscale reinforcements, have drawn significant attention in the field of advanced, high-performance materials. Despite their advantages, multiscale hybrid composites show challenges associated with nanomaterial dispersion, viscosity, interfacial bonding and load transfer, and orientation control. In this paper, carbon nanotube(CNT)/carbon fiber(CF)/polycarbonate(PC) multiscale hybrid composite were fabricated by a solution process to overcome the difficulties associated with controlling the melt viscosity of thermoplastic resins. The dependence of CNT loading was studied by varying the method to add CNTs, i.e., impregnation of CF with CNT/PC/solvent solution and impregnation of CNT-coated CF with PC/solvent solution. In addition, hybrid composites were fabricated through surfactant-aided CNT dispersion followed by vacuum filtration. The morphologies of the surfaces of hybrid composites, as analyzed by scanning electron microscopy, revealed the quality of PC impregnation depends on the processing method. Dynamic mechanical analysis was performed to evaluate their mechanical performance. It was analyzed that if the position of the value of tan ${\delta}$ is closer to the ideal line, the adhesion between polymer and carbon fiber is stronger. The effect of mechanical interlocking has a great influence on the dynamic mechanical properties of the composites with CNT-coated CF, which indicates that coating CF with CNTs is a suitable method to fabricate CNT/CF/PC hybrid composites.

The Effects of Molybdenum Content on the Dynamic Properties of Tungsten-based Heavy Alloys

  • Lee, Woei-Shyan;Chan, Tien-Yin
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1155-1156
    • /
    • 2006
  • Hopkinson bar dynamic test under strain rates ranging from 2000 $s^{-1}$ to 8000 $s^{-1}$ at room temperature revealed that the flow stress of tungsten heavy alloys depended strongly on the strain, strain rate, and the content of molybdenum. The variation of flow stress was caused by the competition between work hardening and heat softening in the materials at different strain rates. The high temperature strength of the matrix phase was increased by the addition of molybdenum, which enhanced the strength of the tungsten heavy alloys in high strain rate test.

  • PDF

Computational Study of Automotive Drum Brake Squeal (자동차 드럼 브레이크의 스퀼 전산 해석 연구)

  • Jung, Taeksu;Cho, Chongdu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.7
    • /
    • pp.16-22
    • /
    • 2014
  • Automotive NVH on brake operation is mainly caused by a coupling action of vehicle speed and inter parts friction and its frequency occurs over a broad band of 0.1 kHz~10 kHz. Especially, squeal noise, being a self-excited vibration generated by friction force between drum and lining, occurs over 1 kHz and consequently dynamic instability is induced when friction energy is applied to a brake vibration system. The squeal strongly depends on nonlinear properties influenced by the material of lining, velocity of vehicle, and the dynamic properties of a brake system. The dynamic properties are considered as a main influential design factor to squeal noise, however the analysis of the properties are rarely facilitated due to arbitrariness of shape by wearing down. In this paper, we research generating tendency of squeal noise through complex eigenvalue analysis, tracking drum brake's unstable modes in accordance with the wear shape of drum and lining such as tapered and bellmouth shape, and analyze computed unstable modes by variable shapes.

Meshless Local Petrov-Galerkin (MLPG) method for dynamic analysis of non-symmetric nanocomposite cylindrical shell

  • Ferezghi, Yaser Sadeghi;Sohrabi, Mohamadreza;Nezhad, Seyed Mojtaba Mosavi
    • Structural Engineering and Mechanics
    • /
    • v.74 no.5
    • /
    • pp.679-698
    • /
    • 2020
  • In this paper, the meshless local Petrov-Galerkin (MLPG) method is developed for dynamic analysis of non-symmetric nanocomposite cylindrical shell equations of elastic wave motion with nonlinear grading patterns under shock loading. The mechanical properties of the nanocomposite cylinder are obtained based on a micro-mechanical model. In this study, four kinds of grading patterns are assumed for carbon nanotube mechanical properties. The displacements can be approximated using shape function so, the multiquadrics (MQ) Radial Basis Functions (RBF) are used as the shape function. In order to discretize the derived equations in time domains, the Newmark time approximation scheme with suitable time step is used. To demonstrate the accuracy of the present method for dynamic analysis, at the first a problem verifies with analytical solution and then the present method compares with the finite element method (FEM), finally, the present method verifies by using the element free Galerkin (EFG) method. The comparison shows the high capacity and accuracy of the present method in the dynamic analysis of cylindrical shells. The capability of the present method to dynamic analysis of non-symmetric nanocomposite cylindrical shell is demonstrated by dynamic analysis of the cylinder with different kinds of grading patterns and angle of nanocomposite reinforcements. The present method shows high accuracy, efficiency and capability to dynamic analysis of non-symmetric nanocomposite cylindrical shell, which it furnishes a ground for a more flexible design.

Evaluation of Correlation between Aggregate Gradation and Dynamic Modulus with Statistical Analysis (통계분석을 통한 골재입도와 동탄성계수 상관도 평가)

  • Lee, Kwan-Ho;Cho, Kyung-Rae;Lee, Byung-Sik
    • International Journal of Highway Engineering
    • /
    • v.10 no.3
    • /
    • pp.11-18
    • /
    • 2008
  • In recent, lots of researches for mechanical-empirical design concept for asphalt pavement are on going. AASHTO 2002 Design Guide in USA and KPRP(Korean Pavement Research Program) in Korea are under developing. In these programs, the mechanical properties of hot mix asphalt are a key role for design and analysis. Unfortunately, there is no proper database on the mechanical properties of hot mix asphalt, such as dynamic modulus. The use of dynamic modulus has couple of good advantages which is based on temperature, traffic loading and frequency on pavement. In this research, the verification of the relationship between maximum nominal aggregate size and dynamic modulus has been carried out. Also, test specimen size effect on dynamic modulus has been conducted. Considering the limitation of laboratory testing machine in Korea, test specimen with 100mm diameter and 150mm height is recommended for dynamic modulus test. Also, as the maximum nominal aggregate size increases, the dynamic modulus of hot mix asphalt increases.

  • PDF

Application Evaluation of Asphalt mixtures using SDAR (Solvent DeAsphaltene Residue) (SDAR을 이용한 아스팔트 혼합물의 적용성 평가)

  • Yang, Sung Lin;Im, Jeong Hyuk;Hwang, Sung Do;Baek, Cheolmin
    • International Journal of Highway Engineering
    • /
    • v.17 no.4
    • /
    • pp.53-61
    • /
    • 2015
  • PURPOSES : The objective of this study is to evaluate the SDAR (solvent deasphaltene residue), which is obtained from the solvent deasphalting (SDA) process, as a pavement material. METHODS : The physical properties of the SDAR were evaluated based on its chemical composition, and asphalt mixtures with the SDAR were fabricated and used for the evaluation of mechanical properties. Firstly, the chemical composition of SARA (saturate, aromatic, resin and asphaltene) was analyzed using the TLC-FID (thin-layer chromatography-flame ionization detector). Moreover, the basic material properties of the asphalt binder with the SDAR were evaluated by the penetration test, softening point test, ductility test, and PG (performance grade) grade test. The rheological properties of the asphalt binder with the SDAR were evaluated by the dynamic shear modulus ($G^*$) obtained using the time-temperature superposition (TTS) principle. Secondly, the mechanical properties of the asphalt mixtures with the SDAR were evaluated. The compactibility was evaluated using the gyratory compacter. Moreover, the tensile strength ratio (TSR) was used for evaluating the moisture susceptibility of the asphalt mixtures (i.e., susceptibility to pothole damage). The dynamic modulus $E^*$, which is a fundamental property of the asphalt mixture, obtained at different temperatures and loading cycles, was used to evaluate the mechanical properties of the asphalt mixtures. RESULTS AND CONCLUSION : The SDAR shows stiffer and more brittle behavior than the conventional asphalt binder. As the application of the SDAR directly in the field may cause early failures, such as cracks on pavements, it should be applied with modifiers that can favorably modify the brittleness property of the SDAR. Therefore, if appropriate additives are applied on the SDAR, it can be used as a pavement material because of its low cost and strong resistance to rutting.

Effect of Transoctylene Rubber(TOR) on the Properties of Natural Rubber/isotactic Polypropylene Blends (Transoctylene rubber(TOR)의 첨가가 NR/isotactic PP 블렌드의 물성에 미치는 영향)

  • Yang, Yung-Chul;Nah, Chang-Woon;Chang, Young-Wook
    • Elastomers and Composites
    • /
    • v.36 no.3
    • /
    • pp.188-194
    • /
    • 2001
  • Thermoplastic elastomers based on dynamically vulcanized NR/TOR/PP (rubber/PP=70/30) blends were prepared in a Haake banbury mixer. Effect of TOR content on the mechanical, dynamic mechanical and thermal stability of the rubber/plastic blends was characterized by UTM, DMTA, and TGA. On the addition of trans-polyoctylene rubber(TOR) to the rubber phase, there was a decrease in compression set and increase in tensile properties, hardness and dynamic properties as well as thermal stability or the elastomeric blends. Improvements in the properties were believed to be due to an increase in crosslink density of the rubber phase and increase in homogeneity of the blends.

  • PDF