• Title/Summary/Keyword: dynamic mechanical

Search Result 5,408, Processing Time 0.033 seconds

Non-axisymmetric dynamic response of imperfectly bonded buried orthotropic pipelines

  • Dwivedi, J.P.;Mishra, B.K.;Upadhyay, P.C.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.3
    • /
    • pp.291-304
    • /
    • 1998
  • This paper deals with the non-axisymmetric dynamic response of an imperfectly bonded buried orthotropic pipeline subjected to longitudinal wave (P-wave) excitation. An infinite cylindrical shell model, including the rotary inertia and shear deformation effects, has been used for the pipeline. For some cases comparison of axisymmetric and non-axisymmetric responses have also been furnished.

A Dynamic Method for Boundary Conditions in Lattice Boltzmann method

  • Suh, Yong-Kweon;Kang, Jin-Fen;Kang, Sang-Mo
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2797-2802
    • /
    • 2007
  • It has been confirmed that implementation of the no-slip boundary conditions for the lattice-Boltzmann method play an important role in the overall accuracy of the numerical solutions as well as the stability of the solution procedure. We in this paper propose a new algorithm, i.e. the method of the dynamic boundary condition for no-slip boundary condition. The distribution functions on the wall along each of the links across the physical boundary are assumed to be composed of equilibrium and nonequilibrium parts which inherit the idea of Guo's extrapolation method. In the proposed algorithm, we apply a dynamic equation to reflect the computational slip velocity error occurred on the actual wall boundary to the correction; the calculated slip velocity error dynamically corrects the fictitious velocity on the wall nodes which are subsequently employed to the computation of equilibrium distribution functions on the wall nodes. Along with the dynamic selfcorrecting process, the calculation efficiently approaches the steady state. Numerical results show that the dynamic boundary method is featured with high accuracy and simplicity.

  • PDF

Direct synthesis method of dynamic systems in terms of bond graphs (본드선도를 이용한 동적시스템의 직접 종합방법)

  • Park, Jeon-Soo;Kim, Jong-Shik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.399-407
    • /
    • 1998
  • This paper deals with a method for finding the physical structure of dynamic systems which shows reasonable response to a given specifiation. The method uses only four basic models of bond graph prototypes which have been originally proposed by the authors as a general model for dynamic systems, and then makes its procedure highly physical in the sense that it can synthesize a dynamic system through the structural transformation directly on bond graph models without any mathematical manipulation. Also, it is shown that this method has further advantages in optimizing parameters for an existing system rather than developing design concepts for a new device, the latter being more suitable using the so-called analytical synthesis method introduced by Park and Redfield. One example serves to trace the outlines of the direct synthesis method proposed in this paper for dynamic systems in terms of bond graph prototypes.

Structural Optimization of Cantilever Beam in Conjunction with Dynamic Analysis

  • Zai, Behzad Ahmed;Ahmad, Furqan;Lee, Chang-Yeol;Kim, Tae-Ok;Park, Myung-Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.5
    • /
    • pp.31-36
    • /
    • 2011
  • In this paper, an analytical model of a cantilever beam having a midpoint load is considered for structural optimization and design. This involves creation of the geometry through a parametric study of all design variables. For this purpose, the optimization of the cantilever beam was elaborated in order to find the optimum geometry which minimizes its volume eventually for minimum weight by FEM (finite element method) analysis. Such geometry can be obtained by different combinations of width and height, so that the beam may have the same cross-sectional area, yet different dynamic behavior. So for optimum safe design, besides minimum volume it should have minimum vibration as well. In order to predict vibration, different dynamic analyses were performed simultaneously to identify the resonant frequencies and mode shapes belonging to the lowest three modes of vibration. Next, by introducing damping effects, the tip displacement and bending stress at the fixed end was evaluated under dynamic loads of varying frequency. Investigation of the results clearly shows that only structural analysis is not enough to predict the optimum values of dimension for safe design it must be aided by dynamic analysis as well.

Dynamic Parameters Identification of an Air Spring for Vibration Isolation of a Complex Testing System of COG Bonding Process (COG 본딩공정 고속복합 검사 시스템의 방진용 에어 스프링의 동적 파라미터 규명 연구)

  • Lee, Ju-Hong;Kim, Pil-Kee;Seok, Jong-Won;Oh, Byung-Joon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.7
    • /
    • pp.13-20
    • /
    • 2010
  • Due to the recent quantum leaps forward in bio-, nano-, and information-technologies, the precisionization and miniaturization of mechanical and electrical components are in high demand. The allowable margin for vibration limits for such equipments is becoming stricter. In order to meet this demand, understandings on the characteristics of vibration isolation systems are highly required. Among the components comprising the vibration isolation system, air spring has become a focal point. In order to develop a complex defect tester for COG bonding of display panels, a vibration isolation system composed of air springs for mounting is considered in this study. The dynamic characteristics of the air spring are investigated, which is the most essential ingredient for reducing the vibration problem of the tester to the lowest level. Uncoupled dynamic parameters of the air spring are identified through MTS experiments, followed by suggestion of a model-based approach to obtain the remaining coupled dynamic parameters. Finally, the dynamic behaviors of the air spring are estimated and discussed.

Dynamic Modeling of a Novel ATC Mechanism based on 4-bar Linkage (4절링크를 기반으로 하는 신개념 ATC 메커니즘의 동역학 해석)

  • Lee, Sangho;Kim, Jong-Won;Seo, TaeWon;Kim, Jongwon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.4
    • /
    • pp.307-314
    • /
    • 2016
  • Recently, demands on the tapping machine are increased due to the case of a cell phone is changed to metal such as aluminum. The automatic tool changer (ATC) is one of the most important devices for the tapping machine related to the speed and energy consumption of the machine. To reduce the consumed energy and vibration, the dynamic modeling is essential for the ATC. In this paper, inverse dynamic modeling of a novel ATC mechanism is introduced. The proposed ATC mechanism is composed of a double four-bar mechanism with a circular tablet to generate continuous rotation of the tablet. The dynamic modeling is performed based on the Lagrange equation with a modeling for the contact between the four-bar and the tablet. Simulation results for various working conditions are proposed and analyzed for the prototype design. The dynamic modeling can be applied to determine the proper actuator and to reduce the vibration and consumed energy for the ATC machine.

Autopilot Design for Agile Missile with Aerodynamic Fin and Thrust Vecotring Control

  • Lee, Ho-Chul;Choi, Yong-Seok;Choi, Jae-Weon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.525-530
    • /
    • 2003
  • This paper is concerned with a control allocation strategy using the dynamic inversion which generates the nominal control input trajectories, and autopilot design using the time-varying control technique which is time-varying version of pole placement of linear time-invariant system for an agile missile with aerodynamic fin and thrust vectoring control. Dynamic inversion can decide the amount of the deflection of each control effector, aerodynamic fin and thrust vectoring control, to extract the maximum performance by combining the action of them. Time-varying control technique for autopilot design enhance the robustness of the tracking performance for a reference command. Nonlinear simulations demonstrates the dynamic inversion provides the effective nominal control input trajectories to achieve the angle of attack command, and time-varying control technique exhibits good robustness for a wide range of angle of attack.

  • PDF

A polynomial chaos method to the analysis of the dynamic behavior of spur gear system

  • Guerine, A.;El Hami, A.;Fakhfakh, T.;Haddar, M.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.4
    • /
    • pp.819-831
    • /
    • 2015
  • In this paper, we propose a new method for taking into account uncertainties based on the projection on polynomial chaos. The new approach is used to determine the dynamic response of a spur gear system with uncertainty associated to gear system parameters and this uncertainty must be considered in the analysis of the dynamic behavior of this system. The simulation results are obtained by the polynomial chaos approach for dynamic analysis under uncertainty. The proposed method is an efficient probabilistic tool for uncertainty propagation. It was found to be an interesting alternative to the parametric studies. The polynomial chaos results are compared with Monte Carlo simulations.

Elastodynamic Response of a Crack Perpendicular to the Graded Interfacial Zone in Bonded Dissimilar Materials Under Antiplane Shear Impact

  • Kim, Sung-Ho;Choi, Hyung-Jip
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1375-1387
    • /
    • 2004
  • A solution is given for the elastodynamic problem of a crack perpendicular to the graded interfacial zone in bonded materials under the action of anti plane shear impact. The interfacial zone is modeled as a nonhomogeneous interlayer with the power-law variations of its shear modulus and mass density between the two dissimilar, homogeneous half-planes. Laplace and Fourier integral transforms are employed to reduce the transient problem to the solution of a Cauchy-type singular integral equation in the Laplace transform domain. Via the numerical inversion of the Laplace transforms, the values of the dynamic stress intensity factors are obtained as a function of time. As a result, the influences of material and geometric parameters of the bonded media on the overshoot characteristics of the dynamic stress intensities are discussed. A comparison is also made with the corresponding elastostatic solutions, addressing the inertia effect on the dynamic load transfer to the crack tips for various combinations of the physical properties.

Modelling and dynamic analysis of electro-mechanical system in machine tools (공작기계 시스템의 모델링과 동적 특성 분석)

  • 박용환;신흥철;문희성;최종률
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.991-994
    • /
    • 1995
  • Recent trend in machine tools is pursuing the high precision and high speed facility and its architecture is being more complicated. With this tendency, it is required the more precise dynamic analysis of electro-mechanical system in machine tools. In this paper, the exact mathematical model of feed and spindle system of a typical machine tools was induced. The feed system is modeled as 7-mass system including the workpiece and the spindle system as 4-mass system. The simulation results show that the induced model depicts the characteristics of real system very well. The effects of each mechanical element to dynamic motion of a machine are analyzed by simulation with the induced model. It ia anticipated that the induced model can be used in the analysis of various machine architectures and in the design stage of new machine tools.

  • PDF