• Title/Summary/Keyword: dynamic load model

Search Result 1,221, Processing Time 0.027 seconds

A Study of Dynamic Characteristic Analysis for Hysteresis Motor Using Permeability and Load Angle by Inverse Preisach Model (역 프라이자흐 모델에 의한 투자율과 부하각을 이용한 히스테리시스 전동기의 동적 특성 해석 연구)

  • Kim, Hyeong-Seop;Han, Ji-Hoon;Choi, Dong-Jin;Hong, Sun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.2
    • /
    • pp.262-268
    • /
    • 2019
  • Previous dynamic models of hysteresis motor use an extended induction machine equivalent circuit or somewhat different equivalent circuit with conventional one, which makes unsatisfiable results. In this paper, the hysteresis dynamic characteristics of the motor rotor are analyzed using the inverse Preisach model and the hysteresis motor equivalent circuit considering eddy current effect. The hysteresis loop for the rotor ring is analyzed under full-load voltage source static state. The calculated hysteresis loop is then approximated to an ellipse for simplicity of dynamic computation. The permeability and delay angle of the elliptic loop apply to the dynamic analysis model. As a result, it is possible to dynamically analyze the hysteresis motor according to the applied voltage and the rotor material. With this method, the motor speed, generated torque, load angle, rotor current as well as synchronous entry time, hunting effect can be calculated.

Flexible Multibody Dynamic Model of a Maglev Vehicle Bogie (자기부상열차 대차 유연 다물체 모델)

  • Kim, Ki-Jung;Han, Hyung-Suk;Lee, Nam-Jin;Kim, Bong-Sub
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1207-1212
    • /
    • 2009
  • The flexible multibody dynamic model of an EMS-type Maglev vehicle is necessary in design stage to predict its behavior, load history and levitation performance. Especially in EMS-type Maglev vehicle, the body flexibility of its bogie with electromagnets affects the levitation performance because its feedback control system is more sensitive to vibration of bogie structure. The flexible multibody dynamic model of a 1/2 Maglev vehicle under test is presented. The basic modeling procedure is almost the same as in other applications. However, the feedback control system model unique in EMS-type maglev vehicle must be included in the model. With the model proposed in this study, the dynamic behavior, load history and levitation performance are more precisely predicted. This model could realize the virtual prototyping in EMS-type Maglev vehicle area.

  • PDF

Characteristic of a Soft Ground Behavior Subjected to Static and Dynamic Loads (A Study on the Model Test) (정하중 및 동하중이 작용하는 연약지반의 거동특성(비교모형실험))

  • Kim, Jong-Ryeol;Kang, Jin-Tae;Lee, Chi-Yeal;Part, Yong-Myun;Jeong, Jea-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.1
    • /
    • pp.111-118
    • /
    • 2008
  • In the study a 2 dimensional model test was executed to grasp the effect of the taking load of equipments on the ground when improving a soft ground like dredging reclaimed ground. The static load and the dynamic load in the consolidated model ground was $0.02kg/cm^2,\;0.03kg/cm^2\;and\;0.04kg/cm^2$ respectively. After consolidating far two months by consolidation load of $0.02kg/cm^2,\;0.03kg/cm^2\;and\;0.04kg/cm^2$ respectively, the ultimate bearing capacity was $0.16kg/cm^2,\;0.19kg/cm^2,\;0.24kg/cm^2$ respectively. And the energy price of dynamic load test at the same point as the settlement of static load test indicated $E=336{\sim}945kg{\cdot}cm,\;E=252{\sim}780kg{\cdot}cm\;and\;E=323{\sim}727kg{\cdot}cm$ for each consolidation load. When the static load and the dynamic load operated at the same ground condition, the heaving quantity was bigger in the case of the dynamic load than in the case of the static load, and the horizontal displacement quantity the in the case of dynamic load was exhibited very deficiently compared to the quantity in the case of static load test.

Analysis and Practical Application of Nonlinear Load Control Model for Swing of Pendulum (비선형 단진자 운동의 하중 모델 적용과 하중 제어 분석)

  • Wang, Hyun-Min;Woo, Kwang-Joon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.3
    • /
    • pp.63-70
    • /
    • 2010
  • We are able to find many materials of pendulum dynamic/analysis using linearized model. Usually, analysis of pendulum is to calculate for velocity, period and angle by linearized model on Newton's law. In this paper, analyzed periodical movement of pendulum using nonlinear load model. That is, analyzed load value according to location of moving pendulum at real time. And for the shake of maneuver for pendulum's location, found load control value and compared result of linearized mode with nonlinear model. The result makes know that it is possibility of nonlinear load control model to apply to various model of movement object including flight object, pendulum and etc.

Parametric Analysis in Dynamic Characteristics of Railway Track due to Travelling Vehicle (주행차량에 의한 궤도 동적?성의 매개변수 분석)

  • Kim Sang-Hyo;Lee Yong-Seon;Cho Kwang-Il
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.337-342
    • /
    • 2003
  • The dynamic load effects are conveyed to the railway bridges through tracks which are generated by moving trains The dynamic load effects may vary due to the dynamic characteristics of the applied vehicle loads and the railway bridges containing the track system. However, the track effects have been neglected or simplified by spring elements in the most studies since it is quite complex to consider the track systems in the dynamic analysis models of railway bridges. In this study, track system on railway bridges is modeled using a three-dimensional discrete-support model that can simulate the load carrying behavior of tracks. In addition, this program is developed with the precise 20-car model and a continuous PSC(prestressed concrete) box girder bridge, which is the main bridge type of Korea Train express(KTX). Three-dimensional elements are used for both. The dynamic response of railway bridges is found to be affected depending on whether the track model is considered or not. The influencing rate depends on the traveling speed and different wheel-axle distance. The dynamic bridge response is decreased remarkably by the track systems around the resonant frequency. Therefore, the resonance effect can be reduced by modifying the track properties in the railway bridge.

  • PDF

Design of TMO Model based Dynamic Analysis Framework: Components and Metrics (TMO모델 기반의 동적 분석 프레임워크 설계 : 구성요소 및 측정지수)

  • Jeong, Yoon-Seok;Kim, Tae-Wan;Chang, Chun-Hyon
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.7
    • /
    • pp.377-392
    • /
    • 2005
  • A lot of studies to measure and analyze the system performance have been done in areas such as system modeling, performance measurement, monitoring, and performance prediction since the advent of a computer system. Studies on a framework to unify the performance related areas have rarely been performed although many studies in the various areas have been done, however. In the case of TMO(Time-Triggered Message-Triggered Object), a real-time programming model, it hardly provides tools and frameworks on the performance except a simple run-time monitor. So it is difficult to analyze the performance of the real-time system and the process based on TMO. Thus, in this paper, we propose a framework for the dynamic analysis of the real-time system based on TMO, TDAF(TMO based Dynamic Analysis Framework). TDAF treats all the processes for the performance measurement and analysis, and Provides developers with more reliable information systematically combining a load model, a performance model, and a reporting model. To support this framework, we propose a load model which is extended by applying TMO model to the conventional one, and we provide the load calculation algorithm to compute the load of TMO objects. Additionally, based on TMO model, we propose performance algorithms which implement the conceptual performance metrics, and we present the reporting model and algorithms which can derive the period and deadline for the real-time processes based on the load and performance value. In last, we perform some experiments to validate the reliability of the load calculation algorithm, and provide the experimental result.

Study on Dynamic Characteristics of Spindle-bearing System Subjected to Radial Load (경방향 하중을 받는 스핀들 베어링 계의 동특성 연구)

  • Choi, Chun-Suk;Hong, Seong-Wook
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.740-746
    • /
    • 2013
  • Angular contact ball bearings are often adopted for a high-speed spindle owing to their durability against axial and radial loads. The dynamic characteristics of an angular contact ball bearing, however, are very complicated because they are dependent on the applied loads as well as on the system configuration. This study systematically analyzes the radial-load-dependent characteristics of spindles as well as angular contact ball bearings. Toward this end, a spindle dynamic model along with the bearing dynamics model is established. An iterative solution algorithm is implemented to resolve the statically indeterminate problem associated with spindle-bearing systems subjected to radial load. Two numerical examples are provided to investigate the spindle and bearing characteristics as a function of radial load with regard to the system configuration.

Energy approach for dynamic buckling of shallow fixed arches under step loading with infinite duration

  • Pi, Yong-Lin;Bradford, Mark Andrew;Qu, Weilian
    • Structural Engineering and Mechanics
    • /
    • v.35 no.5
    • /
    • pp.555-570
    • /
    • 2010
  • Shallow fixed arches have a nonlinear primary equilibrium path with limit points and an unstable postbuckling equilibrium path, and they may also have bifurcation points at which equilibrium bifurcates from the nonlinear primary path to an unstable secondary equilibrium path. When a shallow fixed arch is subjected to a central step load, the load imparts kinetic energy to the arch and causes the arch to oscillate. When the load is sufficiently large, the oscillation of the arch may reach its unstable equilibrium path and the arch experiences an escaping-motion type of dynamic buckling. Nonlinear dynamic buckling of a two degree-of-freedom arch model is used to establish energy criteria for dynamic buckling of the conservative systems that have unstable primary and/or secondary equilibrium paths and then the energy criteria are applied to the dynamic buckling analysis of shallow fixed arches. The energy approach allows the dynamic buckling load to be determined without needing to solve the equations of motion.

Dynamics and control of molten-salt breeder reactor

  • Singh, Vikram;Lish, Matthew R.;Chvala, Ondrej;Upadhyaya, Belle R.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.5
    • /
    • pp.887-895
    • /
    • 2017
  • Preliminary results of the dynamic analysis of a two-fluid molten-salt breeder reactor (MSBR) system are presented. Based on an earlier work on the preliminary dynamic model of the concept, the model presented here is nonlinear and has been revised to accurately reflect the design exemplified in ORNL-4528. A brief overview of the model followed by results from simulations performed to validate the model is presented. Simulations illustrate stable behavior of the reactor dynamics and temperature feedback effects to reactivity excursions. Stable and smooth changes at various nodal temperatures are also observed. Control strategies for molten-salt reactor operation are discussed, followed by an illustration of the open-loop load-following capability of the molten-salt breeder reactor system. It is observed that the molten-salt breeder reactor system exhibits "self-regulating" behavior, minimizing the need for external controller action for load-following maneuvers.

Design Load Case Analysis and Comparison for a 5MW Offwhore Wind Turbine Using FAST, GH Bladed and CFD Method (FAST, GH Bladed 및 CFD기법을 이용한 5MW 해상풍력터빈 시스템 설계하중조건 해석 및 비교)

  • Kim, Ki-Ha;Kim, Dong-Hyun;Kwak, Young-Seob;Kim, Su-Hyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.2
    • /
    • pp.14-21
    • /
    • 2015
  • Design lifetime of a wind turbine is required to be at least 20 years. The most important step to ensure the deign is to evaluate the loads on the wind turbine as accurately as possible. In this study, extreme design load of a offshore wind turbine using Garrad Hassan (GH) Bladed and National Renewable Energy Laboratory (NREL) FAST codes are calculated considering structural dynamic loads. These wind turbine aeroelastic analysis codes are high efficiency for the rapid numerical analysis scheme. But, these codes are mainly based on the mathematical and semi-empirical theories such as unsteady blade element momentum (UBEM) theory, generalized dynamic wake (GDW), dynamic inflow model, dynamic stall model, and tower influence model. Thus, advanced CFD-dynamic coupling method is also applied to conduct cross verification with FAST and GH Bladed codes. If the unsteady characteristics of wind condition are strong, such as extreme design wind condition, it is possible to occur the error in analysis results. The NREL 5 MW offshore wind turbine model as a benchmark case is practically considered for the comparison of calculated designed loads. Computational analyses for typical design load conditions such as normal turbulence model (NTM), normal wind profile (NWP), extreme operation gust (EOG), and extreme direction change (EDC) have been conducted and those results are quantitatively compared with each other. It is importantly shown that there are somewhat differences as maximum amount of 18% among numerical tools depending on the design load cases.