• Title/Summary/Keyword: dynamic lab-test

Search Result 99, Processing Time 0.023 seconds

Feasibility study on an acceleration signal-based translational and rotational mode shape estimation approach utilizing the linear transformation matrix

  • Seung-Hun Sung;Gil-Yong Lee;In-Ho Kim
    • Smart Structures and Systems
    • /
    • v.32 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • In modal analysis, the mode shape reflects the vibration characteristics of the structure, and thus it is widely performed for finite element model updating and structural health monitoring. Generally, the acceleration-based mode shape is suitable to express the characteristics of structures for the translational vibration; however, it is difficult to represent the rotational mode at boundary conditions. A tilt sensor and gyroscope capable of measuring rotational mode are used to analyze the overall behavior of the structure, but extracting its mode shape is the major challenge under the small vibration always. Herein, we conducted a feasibility study on a multi-mode shape estimating approach utilizing a single physical quantity signal. The basic concept of the proposed method is to receive multi-metric dynamic responses from two sensors and obtain mode shapes through bridge loading test with relatively large deformation. In addition, the linear transformation matrix for estimating two mode shapes is derived, and the mode shape based on the gyro sensor data is obtained by acceleration response using ambient vibration. Because the structure's behavior with respect to translational and rotational mode can be confirmed, the proposed method can obtain the total response of the structure considering boundary conditions. To verify the feasibility of the proposed method, we pre-measured dynamic data acquired from five accelerometers and five gyro sensors in a lab-scale test considering bridge structures, and obtained a linear transformation matrix for estimating the multi-mode shapes. In addition, the mode shapes for two physical quantities could be extracted by using only the acceleration data. Finally, the mode shapes estimated by the proposed method were compared with the mode shapes obtained from the two sensors. This study confirmed the applicability of the multi-mode shape estimation approach for accurate damage assessment using multi-dimensional mode shapes of bridge structures, and can be used to evaluate the behavior of structures under ambient vibration.

Real-Time Dynamic Analysis of Vehicle with Experimental Vehicle Model (실험기반 차량모델을 이용한 실시간 차량동역학 해석)

  • Yoo, Wan-Suk;Na, Sang-Do;Kim, Kwang-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.9
    • /
    • pp.1003-1008
    • /
    • 2012
  • The paper presents an Experimental Vehicle Model (EVM), that utilizes the kinematic characteristics of suspensions from SPMD test data. The relative displacement and orientation of a wheel with respect to the body are represented as a function of the vertical displacement of the wheel. The equations of motion of the vehicle are formulated in terms of local coordinates that do not require coordinate transformation, which improves the efficiency of dynamic analysis. The EOM was modularized for each suspension model, and a $6{\times}6$ vehicle model was obtained by combining six suspensions. The analysis results were compared with ADAMS to verify the accuracy of the EVM. This study also verifies the feasibility of real-time simulation with the developed EVM. For a vehicle simulation for 1 ms, the real simulation time required within 20% of the prescribed time. This result shows that the EVM meets the real-time simulation requirements.

Evaluating the Reliability of Short-Form Berg Balance Scales and Short-Form Postural Assessment Scales in Chronic Stroke Survivors

  • Seung-Heon An;Dae-Sung Park
    • Physical Therapy Rehabilitation Science
    • /
    • v.13 no.2
    • /
    • pp.143-151
    • /
    • 2024
  • Objective: This study aims to assess the test-retest reproducibility of the Short Form Berg Balance Scale (SF-BBS) and the Short Form Postural Assessment Scale for Stroke (SF-PASS) among chronic stroke survivors, focusing on their reliability for consistent measurements over time. Design: A cross-sectional study design Methods: Thirty chronic stroke survivors participated in this study, undergoing evaluations with SF-BBS and SF-PASS scales at two different points, separated by a seven-day interval. The analysis focused on test-retest reliability, employing statistical measures such as the Intra-Class Coefficient (ICC2,1), Standard Error of Measurement (SEM), Minimal Detectable Change (MDC), and MDC%, the Bland-Altman plot to assess the limits of agreement and the extent of random measurement error. Results: The study found notable test-retest reproducibility for both SF-BBS and SF-PASS, with ICC values demonstrating strong reliability (0.932 to 0.941, with a confidence interval of 0.889 to 0.973). SEM values for SF-BBS and SF-PASS were reported as 1.34 and 0.61, respectively, indicating low measurement error. MDC values of 3.71 for SF-BBS and 1.69 for SF-PASS suggest that the scales have an acceptable level of sensitivity to change, with reliability metrics falling below 20% of the maximum possible score. Conclusions: The findings suggest that both SF-BBS and SF-PASS exhibit high intra-class correlation coefficients, indicating strong test-retest reliability. The SEM and MDC values further support the scales' reproducibility and reliability as tools for evaluating mobility and dynamic balance in chronic stroke survivors. Therefore, these scales are recommended for clinical use in this population, providing reliable measures for assessing progress in rehabilitation.

Evaluation of Accuracy and Inaccuracy of Depth Sensor based Kinect System for Motion Analysis in Specific Rotational Movement for Balance Rehabilitation Training (균형 재활 훈련을 위한 특정 회전 움직임에서 피검자 동작 분석을 위한 깊이 센서 기반 키넥트 시스템의 정확성 및 부정확성 평가)

  • Kim, ChoongYeon;Jung, HoHyun;Jeon, Seong-Cheol;Jang, Kyung Bae;Chun, Keyoung Jin
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.228-234
    • /
    • 2015
  • The balance ability significantly decreased in the elderly because of deterioration of the neural musculature regulatory mechanisms. Several studies have investigated methods of improving balance ability using real-time systems, but it is limited by the expensive test equipment and specialized resources. Recently, Kinect system based on depth data has been applied to address these limitations. Little information about accuracy/inaccuracy of Kinect system is, however, available, particular in motion analysis for evaluation of effectiveness in rehabilitation training. Therefore, the aim of the current study was to evaluate accuracy/inaccuracy of Kinect system in specific rotational movement for balance rehabilitation training. Six healthy male adults with no musculoskeletal disorder were selected to participate in the experiment. Movements of the participants were induced by controlling the base plane of the balance training equipment in directions of AP (anterior-posterior), ML (medial-lateral), right and left diagonal direction. The dynamic motions of the subjects were measured using two Kinect depth sensor systems and a three-dimensional motion capture system with eight infrared cameras for comparative evaluation. The results of the error rate for hip and knee joint alteration of Kinect system comparison with infrared camera based motion capture system occurred smaller values in the ML direction (Hip joint: 10.9~57.3%, Knee joint: 26.0~74.8%). Therefore, the accuracy of Kinect system for measuring balance rehabilitation traning could improve by using adapted algorithm which is based on hip joint movement in medial-lateral direction.

MPEG-2 Bit-Rate Control for Video Sequence Editing using Dynamic Macroblock Bit Assignment (압축 비디오시퀀스 편집을 위한 동적 매크로블럭 비트할당 MPEG-2 비트율 제어)

  • Kim, Ju-Do;Lee, Keun-Young
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.9
    • /
    • pp.63-69
    • /
    • 1998
  • In this paper, we propose a new Bit-Rate control algorithm based on bit usage matching to substitute encoded GOP(s) for new GOP(s) in MPEG-2 bitstream. It iteratively encodes current picture according to quantization value of previous picture and records bit-usage of each slice until nearly target bits are used. With target bits falling in two output bits, quantization value of slice should be changed to alleviate output bit error. We use recorded bit-usage information to decide which slices should be encoded with one quantization value and others with another. As every macroblock has different activity, we change macroblock quantization value using slice quantization value and activity value. The simulation results demonstrate that the fluctuation of the output bits can be kept within few-several tens of bits while maintaining the quality of the reconstructed pictures at a relatively stable level.

  • PDF

Combustion Stability for Utility Gas Turbines : Development of a Real-Time Assessment Software (발전용 가스터빈의 실시간 연소안정성 평가 소프트웨어 개발)

  • In, Byeung Goo;Song, Won Joon;Cha, Dong Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.6
    • /
    • pp.306-315
    • /
    • 2017
  • This study introduces a software for real-time assessment of combustion stability for utility gas turbines. The software was written with LabView, and implemented the time-domain kurtosis as a parameter to proactively access the instantaneous combustion stability during operation of the industrial gas turbine. The simple time-domain assessment algorithm incorporated in the software is advantageous over conventional frequency-domain signal processing of dynamic pressure signal since it reduces the computational cost, thereby making the algorithm more appropriate for real-time monitoring of combustion stability. Benchmark data obtained from a model gas turbine combustor were used for the reproducibility test of the software. The assessment obtained from the software agreed well with previously published results, indicating that incorporation of the software could enhance the performance of systems monitoring the combustion stability for gas turbines during power generation.

ARP Modification for Prevention of IP Spoofing

  • Kang, Jung-Ha;Lee, Yang Sun;Kim, Jae Young;Kim, Eun-Gi
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.3
    • /
    • pp.154-160
    • /
    • 2014
  • The address resolution protocol (ARP) provides dynamic mapping between two different forms of addresses: the 32-bit Internet protocol (IP) address of the network layer and the 48-bit medium access control (MAC) address of the data link layer. A host computer finds the MAC address of the default gateway or the other hosts on the same subnet by using ARP and can then send IP packets. However, ARP can be used for network attacks, which are one of the most prevalent types of network attacks today. In this study, a new ARP algorithm that can prevent IP spoofing attacks is proposed. The proposed ARP algorithm is a broadcast ARP reply and an ARP notification. The broadcast ARP reply was used for checking whether the ARP information was forged. The broadcast ARP notification was used for preventing a normal host's ARP table from being poisoned. The proposed algorithm is backward compatible with the current ARP protocol and dynamically prevents any ARP spoofing attacks. In this study, the proposed ARP algorithm was implemented on the Linux operating system; here, we present the test results with respect to the prevention of ARP spoofing attacks.

Measurement of the Time Constant of Industrial Platinum Resistance Thermometers (산업용 백금저항온도계의 시정수 측정)

  • Kim, Yong-Gyoo;Kim, Sook-Hyang;Yang, In-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.11
    • /
    • pp.41-46
    • /
    • 2009
  • We present experimental data on the time response behavior of industrial platinum resistance thermometers (IPRT) to help with the selection of proper sensors in industry and research laboratories. Time constants of IPRTs were measured using a method specified in ASTM standards. Two different sensors of different protecting sheath diameters were tested in air, water and silicon oil at temperatures from $0^{\circ}C$ to $200^{\circ}C$. The time constant was the smallest in water and the highest in air. As the test temperature increased, time constants tended to decrease at all heat conducting media. For different diameters of sheath of IPRT at the same temperature, it was found that the IPRT of larger diameter showed higher time constant in air, but the opposite dependence was observed in water and oil. From the measured results, it was suggested that the sensor diameter and heat conducting medium should be considered if one wants to select proper thermometer to measure the dynamic temperature change in industry and research area.

Lab-based Simulation of Carton Clamp Truck Handling - Frictional Characteristics between Corrugated Packages

  • Park, Jong Min;Choi, Sang Il;Kim, Jong Soon;Jung, Hyun Mo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.25 no.3
    • /
    • pp.131-137
    • /
    • 2019
  • Carton clamps, one of forklift attachments, allow users to quickly handle shipping units such as unitized loads, large shipping cases, or crates without the requirement of pallets. As the use of palletless handling by clamp trucks increases, so does the need for simulation research on clamp truck handling. The frictional characteristics for various contact conditions of corrugated paperboards and their constituent boards were analyzed to obtain the data needed in the computer simulation for the handling of carton clamp truck. The overall mean of static-frictional coefficients between selected corrugated paperboards was 0.38 (±0.01), which was 1.3~1.6 times greater than 0.23~0.29 of the frictional coefficients between boards. The overall mean of static-frictional coefficients between the corrugated paperboards and the rubber contact pad was 0.82 (±0.02), which was about 1.1 to 2.8 times greater than 0.29~0.78 of the static-frictional coefficient between the linerboard and the rubber contact pad. The overall mean of kinetic-frictional coefficients between the corrugated paperboards was 0.35 (±0.01), and 0.76 (±0.02) between the corrugated paperboards and the rubber contact pad.

Inverse Kinematic Analysis for a three-axis Hydraulic Fatigue Simulator Coupling (3축 유압 피로 시뮬레이터의 커플링에 대한 역기구학적 해석)

  • Kim, Jinwan
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.1
    • /
    • pp.16-20
    • /
    • 2020
  • The fatigue happening during the road riding of the vehicle and for the moment the aircraft lands on the runway is closely related to the life cycle of the landing gear, the airframe, the vehicle's suspension, etc. The multiple loads acting on the wheel are longitudinal, lateral, vertical, and braking forces. To study the dynamic characteristics and fatigue stiffness of the vehicle, the dynamic fatigue simulator generally has been used to represent the real road vibration in the lab. It can save time and cost. In hardware, the critical factor in the hydraulic fatigue simulator structure is to decouple each axis and to endure several load vibration. In this paper, the inverse kinematic analysis method derives the magnitude of movement of the hydraulic servo actuator by the coupling after rendering the maximum movement displacement in the axial direction at the center of the dummy wheel. The result of the analysis is that the coupling between the axes is weak to reproduce the real road vibrations precisely.