
 154

I. INTRODUCTION

Although the Internet protocol (IP) has become widely

successful, it has led to many security issues. Many of these

security issues are related to illegal host access. An address

resolution protocol (ARP) spoofing attack is another

security issue related to an illegal host access. This paper

deals with the prevention of these ARP spoofing attacks.

ARP provides dynamic mapping between two different

forms of addresses: the 32-bit IP address of the network

layer and the 48-bit medium access control (MAC) address

of the data link layer [1]. A host computer finds the MAC

address of a default gateway or of the other hosts on the

same subnet by using ARP, after which it can send data

packets [2]. However, recently, there have been a con-

siderable number of network attacks using ARP. The types

of these attacks can vary from attacks interfering with the

network operations of the host to spoofing attacks that allow

the attacker to intercept data frames. Man in the middle

(MITM) attacks are a form of potential spoofing attacks. An

MITM attack means that the attacker intercepts the data

frames of the target host, modifies them maliciously, and

then forwards these modified frames [3]. A number of

solutions have been proposed to prevent ARP spoofing

attacks [4]. However, the existing solutions require

additional systems or are not perfectly compatible with the

current ARP.

In this paper, a modified ARP algorithm to prevent

spoofing attacks is proposed. The proposed algorithm is

backward compatible with the current ARP and can

Received 17 April 2014, Revised 02 May 2014, Accepted 09 July 2014
*Corresponding Author Eun-Gi Kim (E-mail:egkim@hanbat.ac.kr, Tel: +82-42-821-1215)
Department of Information and Communication Engineering, Hanbat National University, 125 Dongseo-daero, Yuseong-gu, Daejeon 305-719, Korea.

 http://dx.doi.org/10.6109/jicce.2014.12.3.154 print ISSN: 2234-8255 online ISSN: 2234-8883

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-

nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Copyright ⓒ The Korea Institute of Information and Communication Engineering

J. lnf. Commun. Converg. Eng. 12(3): 154-160, Sep. 2014 Regular paper

ARP Modification for Prevention of IP Spoofing

Jung-Ha Kang

1
, Yang Sun Lee

2
, Jae Young Kim

3
, and Eun-Gi Kim

1*
, Member, KIICE

1Department of Information and Communication Engineering, Hanbat National University, Daejeon 305-719, Korea
2Division of Computer Engineering, Mokwon University, Daejeon 302-729, Korea
3IT Convergence Technology Research Lab., Electronics and Telecommunications Research Institute, Daejeon 305-700, Korea

Abstract
The address resolution protocol (ARP) provides dynamic mapping between two different forms of addresses: the 32-bit

Internet protocol (IP) address of the network layer and the 48-bit medium access control (MAC) address of the data link layer.

A host computer finds the MAC address of the default gateway or the other hosts on the same subnet by using ARP and can

then send IP packets. However, ARP can be used for network attacks, which are one of the most prevalent types of network

attacks today. In this study, a new ARP algorithm that can prevent IP spoofing attacks is proposed. The proposed ARP

algorithm is a broadcast ARP reply and an ARP notification. The broadcast ARP reply was used for checking whether the ARP

information was forged. The broadcast ARP notification was used for preventing a normal host’s ARP table from being

poisoned. The proposed algorithm is backward compatible with the current ARP protocol and dynamically prevents any ARP

spoofing attacks. In this study, the proposed ARP algorithm was implemented on the Linux operating system; here, we present

the test results with respect to the prevention of ARP spoofing attacks.

Index Terms: ARP cache, ARP poison, ARP spoofing, MITM, Network attack, Spoofing detection

Open Access

ARP Modification for Prevention of IP Spoofing

http://jicce.org 155

effectively prevent ARP spoofing attacks.

The rest of this paper is organized as follows: Section II

describes the ARP operation and ARP spoofing attacks. In

Section III, the proposed ARP protocol is described. In

Sections IV and V, implementation of the proposed

algorithm and test results for its verification are discussed.

The conclusion is presented in Section VI.

II. ARP SPOOFING ATTACKS

A. Address Resolution Protocol

An Ethernet ARP frame format is illustrated in Fig. 1(a).

The Ethernet header includes the Ethernet destination

address, Ethernet source address, and frame type. The

Ethernet address, also known as the MAC address, is a 48-

bit address. In the case of an ARP frame, the value of the

frame type field is ‘0x0806.’ The ARP header includes the

type of hardware address (its value for Ethernet is 1), the

type of protocol address (its value for an IP address is

0x0800), the size of the hardware address (6 bytes for

Ethernet), the size of the protocol address (4 bytes for an IP

address), and the operation field (1 for an ARP request and 2

for an ARP reply). The payload fields of an ARP frame

include the sender’s Ethernet address, sender’s IP address,

target’s Ethernet address, and target’s IP address. With the

ARP request frames, all the fields are filled in except the

target Ethernet address. The target host receiving the ARP

request fills in the target Ethernet address field with its

Ethernet address, swaps the two sender addresses with the

two target addresses, sets the operation code (OP) field to 2,

and sends the ARP reply [2, 5].

(a)

01:23:45:67:89:AB 01:23:45:67:89:CD

0x01 6 4 0x02

01:23:45:67:89:CD 192.168.0.1

01:23:45:67:89:AB 192.168.0.2

0x0806

0x0800

A

1) broadcast ARP Request

FF:FF:FF:FF:FF:FF 01:23:45:67:89:AB

0x01 6 4 0x01

01:23:45:67:89:AB 192.168.0.2

00:00:00:00:00:00 192.168.0.1

0x0806

0x0800

IP[192.168.0.2]

MAC[01:23:45:67:89:AB] B
IP[192.168.0.1]

MAC[01:23:45:67:89:CD]

2) unicast ARP Reply

to Host A

C

3) add ARP Table

IP[192.168.0.1]

MAC[01:23:45:67:89:CD]

4) Send IP Packets to Host B
(b)

Fig. 1. Address resolution protocol (ARP) frame format and operation.

(a) ARP frame format, (b) normal ARP operation.

Fig. 1(b) shows a normal ARP operation. First, host A

broadcasts an ARP request to find out host B’s MAC

address for the destination IP [192.168.0.1]. Hosts B and C

receive host A’s ARP request, but host C drops the request

because the target IP address is not the same as its IP

address. Secondly, host B confirms that the target IP address

of the ARP request is the same as its own IP address and

sends out a unicast ARP reply to host A. Thirdly, host A,

having received the ARP reply from host B, saves both the

MAC address and the IP address of host B in its ARP table.

Finally, host A sends IP packets to host B referencing the

ARP entry that includes host B’s MAC address and IP

address.

B. ARP Spoofing Attacks

During ARP spoofing attacks, an attacker periodically

sends out a forged unicast (or broadcast) ARP request and

reply. The victim receiving the forged ARP request or reply

then adds the poisoned ARP entry to its ARP table. The

victim sends IP packets to the attacker referring to the

poisoned ARP entry rather than the normal target host. ARP

request attacks and ARP reply attacks are described in the

following paragraphs separately [6]. ARP attacks are

illustrated in Fig. 2.

A

 IP[192.168.0.2]

MAC[01:23:45:67:89:AB]

B

 IP[192.168.0.1]

MAC[01:23:45:67:89:CD]

M

01:23:45:67:89:EF 01:23:45:67:89:AB

0x01 6 4 0x02

01:23:45:67:89:AB 192.168.0.2

01:23:45:67:89:EF 192.168.0.1

0x0806

0x0800

3) unicast ARP Reply

1) unicast

 ARP Request to Host A

 IP[192.168.0.30]

MAC[01:23:45:67:89:EF]

2) Save [192.168.0.1], [01:23:45:67:89:EF]

entry in ARP Table

01:23:45:67:89:AB 01:23:45:67:89:EF
0x01 6 4 0x01
01:23:45:67:89:EF 192.168.0.1
00:00:00:00:00:00 192.168.0.2

0x0806
0x0800

Forged Frame

4) Send IP Packets using host M mac address

if request to send IP Packets to B

(a)

A

IP[192.168.0.2]

MAC[01:23:45:67:89:AB]

B

IP[192.168.0.1]

MAC[01:23:45:67:89:CD]

M

IP[192.168.0.30]

MAC[01:23:45:67:89:EF]

2) Create (or Update)

[192.168.0.1], [01:23:45:67:89:EF] in ARP Table

1) unicast ARP Reply to Host A

3) Send IP Packets using host M mac address

if request to send IP Packets to B

01:23:45:67:89:AB 01:23:45:67:89:EF

0x01 6 4 0x02

01:23:45:67:89:EF 192.168.0.1

01:23:45:67:89:AB 192.168.0.2

0x0806

0x0800

Forged Frame

(b)

Fig. 2. Address resolution protocol (ARP) spoofing attacks. (a) Forged

ARP request attack, (b) forged ARP reply attack.

Ethernet Destination Address Etherent Source Address

Hard Type HS PS OP

Sender Ethernet Address Sender IP Address

Target Ethernet Address Target IP Address

Frame

Type

Prot Type

Ethernet Header

ARP Header

ARP Payload

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

J. lnf. Commun. Converg. Eng. 12(3): 154-160, Sep. 2014

http://dx.doi.org/10.6109/jicce.2014.12.3.154 156

1) Forged ARP Request Attacks

During a normal ARP operation, shown in Fig. 1(b), host

B saves host A’s MAC address and IP address at the time of

receipt of the ARP request from host A. Thus, the attacker

sends out a forged ARP request by unicast or broadcast to

the normal host, and thus, the normal host makes a poisoned

ARP entry of only the forged ARP request. An ARP request

attack is illustrated in Fig. 2(a). Hosts A and B are legitimate

hosts, and host M is the malicious host. First, host M sends

out a unicast ARP request forging host B’s IP address to host

A. The forged ARP request includes host B’s IP address in

the sender’s IP address field and host M’s MAC address in

the sender’s MAC address field. Secondly, host A stores the

sender’s IP address and the MAC address of the forged APP

request in its ARP table. The stored ARP entry is

[192.168.0.1] (host B’s IP address) on “01:23:45:67:89:EF”

(host M’s MAC Address). Thirdly, host A sends out an ARP

reply to host M. Finally, the MAC address for the IP address

[192.168.0.1] is the poisoned ARP entry in host A’s ARP

table. If host A sends out IP packets with a destination IP

address [192.168.0.1], these packets are sent out to host M,

not host B.

2) Forged ARP Reply Attacks

The attacker sends out a forged unicast ARP reply to a

specific host, and then, the host saves the sender’s MAC

address and the IP address of the forged ARP reply in its

ARP table irrespective of whether a reply was solicited.

Therefore, the normal host may refer to the poisoned entry.

Fig. 2(b) shows an ARP reply attack. Firstly, host M sends

out a unicast ARP reply forging host B’s IP address to host

A. Secondly, host A creates or updates a forged ARP entry

from the malicious ARP reply of host M. Thirdly, host A

refers to the poisoned ARP entry and sends out the frame;

then, all frames that must be sent to host B are delivered to

host M. Hosts mostly communicate with servers or hosts on

other subnets. Thus, an attacker generally forges a gateway’s

IP address for an ARP spoofing attack [7].

III. PROPOSED ADDRESS RESOLUTION
PROTOCOL

In this section, a modified ARP algorithm for the pre-

vention of ARP spoofing attacks, described in Section II, is

proposed. There are two main differences between the

proposed ARP algorithm and the original ARP algorithm.

The first difference is that the proposed ARP algorithm

sends out broadcast ARP replies. This is a procedure

wherein other hosts verify whether the mapping of the MAC

address and IP address in the ARP reply is forged or not.

The second difference is the new ARP message type,

defined as an ARP notification.

A M

2) if(Need to create or update ARP entry?)

 Send to broadcast ARP Reply

 Save the ARP entry in PTE Table, Start Timer

3) <B and C>

if(detect [other host Mac and this host IP])

 Send to broadcast ARP Notify

4) if(Receive ARP Notify?)

 Delete PTE entry in PTE Table, Do not insert in ARP Table

 else if(Timeout) Save PTE Entry in ARP Table

1) Send forged ARP Request/Reply

B C

Fig. 3. Proposed address resolution protocol (ARP) algorithm.

The function of the ARP notification is to notify other

hosts of the forged address. In other words, normal hosts can

receive all ARP replies and thereby detect an ARP spoofing

attack, and the host detecting the attack broadcasts the ARP

notification. Hosts receiving an ARP notification do not

save the relevant address in the ARP table.

Fig. 3 shows an overview of the ARP algorithm proposed

in the study. Firstly, host M, the attacker, transmits the

forged ARP request (or ARP reply), usually by unicast.

Secondly, host A, the victim, checks whether its IP address

is the same as the target IP address of the ARP request frame

from host M. If it is the same, host A adds the sender’s

MAC address field and IP address field to its processing

table entry (PTE) table. Then, host A broadcasts an ARP

reply in order to verify the sender’s addresses and starts its

PTE timer. Thereafter, hosts B and C receive the broadcast

ARP reply from host A. Hosts B and C can detect the

presence of an ARP spoofing attack if host B(or host C)’s IP

address is the same as the target IP address but its MAC

address is different from the target MAC address. Thus,

hosts B and C broadcast an ARP notification in the event of

attack detection. Finally, host A receives the broadcast ARP

notification from host B or host C prior to timeout and then,

deletes the relevant entry from its PTE table. If no ARP

notification arrives prior to the timeout, host A saves the

PTE in its ARP table.

The frame format of an ARP notification is the same as

that illustrated in Fig. 1(a), and the operation value is

defined as 0x0B. The MAC address of the suspected

attacking hosts is entered into the target MAC address field

of the ARP notification. The IP address of the victim is

Table 1. Modified address resolution protocol (ARP) state transition

table

Symbol Idle

User Request *1

ARP Request (M[S], IP[S], M[T], IP[T]) *2

ARP Reply (M[S], IP[S], M[T], IP[T]) *3

ARP Notification (M[S], IP[S], M[T], IP[T]) *4

Timeout *5

ARP Modification for Prevention of IP Spoofing

http://jicce.org 157

entered into the target IP address field of the ARP

notification. The host receiving the ARP notification does

not create or update the forged address in its ARP Table.

Consequently, the function of the ARP notification is to

prevent ARP spoofing attacks. Table 1 shows the state

transition table of the proposed ARP algorithm.

*1:

i. Send ARP Request(M[This Host], IP[This Host], 0,

IP[Requested Host]) to Ether(Bca, M[This Host]);

ii. Requested.IP[Requested Host] = TRUE;

*2:

i. If(IP[S] == IP[This Host])

· Send ARP Notification(M[This Host], IP[This

Host], M[S], IP[S]) to Ether(Bca, M[This Host]);

ii. Else if(IP[T] == IP[This Host])

· Send Reply(M[This Host], IP[This Host], M[S],

IP[S]) to Ether(Bca, M[This Host]);

· Save M[S], IP[S] into PTE;

· Start Timer;

· PTE for “M[S], IP[S]”.next state = Wait;

*3:

i. If(Requested.IP[IP[T]] == TRUE)

/* Normal Reply by solicitation */

· Save M[S], IP[S] into PTE;

· Start Timer;

· PTE for “M[S], IP[S]”.next state = Wait;

· Requested.IP[IP[T]] == FALSE;

ii. Else if(IP[T] == IP[This Host])

/* Unsolicited ARP reply */

· Send Received Reply frame to Ether(bca, M[This

Host]);

· Save M[S], IP[S] into PTE;

· Start Timer;

· PTE for “M[S], IP[S]”.next state = wait;

iii. Else if(IP[S] == IP[This Host])

· Send ARP Notification(M[This Host], IP[This

Host], M[T], IP[T]) to Ether(Bca, M[This Host]);

*4:

If(PTE for “M [S], IP[S]”.next state == Wait)

· Purge the entry in PTE;

*5:

If(PTE for “MS[S], IP[S]”.next state == Wait)

· Save M[S], IP[S] into ARP Table;

· Purge the entry in PTE;

IV. IMPLEMENTATION

The ARP source code is generally included in the kernel

of an operating system. The ARP source code included in

the kernel must be modified in order to implement the

proposed algorithm. Thus, an ARP source in Linux Kernel

was used for the implementation of the proposed ARP

algorithm; this was done because Linux is an open-source

operating system [8-10]. Modification of the ARP code can

lead to frequent replacement of the kernel image. Thus,

embedded systems are used for development convenience

[11]. Embedded systems based on the ARM 6410 CPU were

used. The kernel that was ported to the ARM 6410 board

was Linux Kernel version 2.6.21. In this section, the original

ARP source code is described, and then, the modified code

to implement the proposed algorithm is described in detail.

A. Original ARP Instance in the Linux Kernel

“arp_tbl” as the ARP table is declared by “struct neigh_

table” in the ARP instance of Linux kernel 2.6.21, and the

functions called for ARP processing are as shown in Fig. 4

[8, 9].

As shown in Fig. 4, the ARP frames are processed by the

function arp_process(). The proposed algorithm to be

implemented is mostly related to this function.

B. Implementation Details

In this study, the ARP notification frame’s OP code was

defined as ARPOP_NOTIFY (11), and the modified

arp_process() function was mainly used for implementing

the proposed algorithm. Management functions, timer, and

structure for the PTE table were also implemented.

neigh_update arp_tbl

neigh_lookup

arp_send

arp_rcv

net_rx_action dev_queue_xmit

neigh_resolve_

output

Higher layers

arp.c, neighbour.c

ETH_P_ARPdev.c dev.c

IPv4

IPv4

arp_process

ARP reply

ARP
request

ARP
request/reply

ip_queue_xmit

ip_finish_output2

Fig. 4. Function flow related to address resolution protocol (ARP)

processing.

J. lnf. Commun. Converg. Eng. 12(3): 154-160, Sep. 2014

http://dx.doi.org/10.6109/jicce.2014.12.3.154 158

Start arp_proccess()

if(ARP_REQUEST)

Yes

1)

2)

3)

if(sip==myip)

Call

arp_send(ARP_NOTIFY, broadcast)

if(tip==myip)

Call

arp_send(ARP_REPLY, broadcast)

Call arp_pte_add(sha, sip)

Start PTE Timer

4)

5)

6)

Yes

No

Yes

(a)

Start arp_proccess()

if(ARP_REPLY)

Yes

1)

2)

3)

if(tip==myip)

if(sip==myip

&& sha!=myha)

Call

arp_send(ARP_NOTIFY,broadcast)

4)

5)

Yes

No

Yes

Call arp_send(ARP_NOTIFY,

broadcast)

else if(tha==myha)

Call arp_send(ARP_REPLY,

broadcast) or Wait to timeout

No

Yes 7)

8)

if(Solicited.IP?)
Call arp_pte_add(sha, sip)

Start PTE Timer

6)

9)

Yes

No

(b)

Start arp_proccess()

if(ARP_NOTIFY)

Call

arp_pte_lookup(tip)

arp_pte_timer_stop()

arp_pte_del()

Call

neigh_lookup(tip)

neigh_destory()

Yes1)

2) 3)

(c)

Fig. 5. Function flow related to address resolution protocol (ARP)

processing. (a) Modification of ARP request message processing, (b)
modification of ARP reply message processing, and (c) modification of
ARP notification message.

<Notations>

· sip: sender’s IP address

· sha: sender’s MAC address

· tip: target’s IP address

· tha: target’s MAC address

· myip: this host’s IP address

· myha: this host’s MAC address

The modified arp_process() function will receive ARP_

REQUEST frame, ARP_REPLY frame or ARP_NOTIFY

frame and the processing flow of each frame is illustrated in

Fig. 5.

1) ARP Request Frame Processing Shown in Fig. 5(a)

· 2) to 3): If sip is the same as myip (the host’s IP

address), the host broadcasts an ARP notification frame

due to an attack.

· 4) to 6): If tip is the same as myip, the host broadcasts

an ARP reply. Then, the host adds sha and sip to the

PTE entry and starts the PTE timer.

2) ARP Reply Frame Processing Shown in Fig. 5(b)

· In cases 2), 3), and 4), suppose that (tip == myip) and

Solicited.IP: The ARP reply is normally the solicited

frame. Thus, an ARP reply including sha and sip is

added to the PTE table, and the PTE timer is started and

counts down until timeout.

· In cases 2), 5), and 6), suppose that (tip == myip) and

(tha == myha): This is an unsolicited ARP reply. Thus,

the ARP reply is retransmitted by broadcast for its

verification from other hosts. Then, sha and sip are

added to the PTE table, and the PTE timer is started.

· In cases 2), 5), and 7), suppose that (tip == myip) and

(tha != myha): This is an ARP reply attack using myip

(this host’s IP address), and the host broadcasts an ARP

notification.

· In cases 8) and 9), suppose that (sip == myip) and

(sha != myha): This is an ARP reply attack and the host

broadcasts an ARP notification.

3) ARP Notification Processing Shown in Fig. 5(c)

· When it receives an ARP notification, stop the PTE

timer and delete the PTE including tip.

· Further, delete the ARP entry related to the tip and tha

of the ARP notification.

(a)

(b)

Fig. 6. The Victim’s Console Log. (a) Host A console log, (b) host B

console log.

ARP Modification for Prevention of IP Spoofing

http://jicce.org 159

V. TESTS AND RESULTS

Hosts A and B as victims are embedded boards loaded

with the Linux OS. Host M as an attacker is a personal

computer, and the Cain & Abel program, an ARP spoofing

attack tool, operates at host M. Further, all ARP frames on

the subnet were captured using the Wireshark tool operating

at Host M.

As shown in Fig. 6, a Ping test to make the ARP entry

was attempted first. After the creation of the ARP entry,

ARP spoofing attacks were attempted. The results confirmed

that the normal ARP entry remained unchanged after the

attacks.

ARP notification transmissions were verified as shown in

Table 2.

Table 2. Sniffing data caused by the proposed ARP for the solicited

ARP entry

No. Time Src Dest Info Comment

→45 34.1362 ~:91 Broadcast
Who has 192.168.0.14?

Tell 192.168.0.13

Normal Request

for Ping

→46 34.1694 ~:24 Broadcast
192.168.0.14 is

at 00:0a:c0:ff:fc:24
Normal Reply

→47 34.5987 ~:24 Broadcast
Who has 192.168.0.13?

Tell 192.168.0.14
Normal Request

→48 34.6345 ~:91 Broadcast
192.168.0.13 is

at 00:0a:c0:ff:fc:91
Normal Reply

→52 40.0915 ~:91 Broadcast
192.168.0.13 is

at 00:0a:c0:ff:fc:91
Normal Reply

→53 40.1760 ~:24 Broadcast
192.168.0.14 is

at 00:0a:c0:ff:fc:24
Normal Reply

→80 66.3661 ~:eb ~:91
Who has 192.168.0.13?

Tell 192.168.0.14
Request Attack

→81 66.3664 ~:eb ~:24
Who has 192.168.0.14?

Tell 192.168.0.13
Request Attack

→82 66.3668 ~:eb ~:91
192.168.0.14 is

at 00:13:77:87:b4:eb
Reply Attack

→83 66.3673 ~:eb ~:24
192.168.0.13 is

at 00:13:77:87:b4:eb
Reply Attack

→84 66.4091 ~:91 Broadcast
192.168.0.13 is

at 00:0a:c0:ff:fc:91
13's Reply

→85 66.4163 ~:24 Broadcast
192.168.0.14 is

at 00:0a:c0:ff:fc:24
14's Reply

→86 66.4526 ~:91 Broadcast
192.168.0.13 is

at 00:0a:c0:ff:fc:91

Broadcast unconf

irmArp Reply

→87 66.4609 ~:24 Broadcast
192.168.0.14 is

at 00:0a:c0:ff:fc:24

Broadcast unconf

irmArp Reply

→88 66.4978 ~:91 Broadcast
Unknown ARP

 opcode 0x000b

13's ARP

notification

→89 66.5064 ~:24 Broadcast
Unknown ARP

 opcode 0x000b

14's ARP

notification

→90 66.5432 ~:91 Broadcast
Unknown ARP

opcode 0x000b

13's ARP

notification

→91 66.5523 ~:24 Broadcast
Unknown ARP

opcode 0x000b

14's ARP

notification

ARP: address resolution protocol.

VI. CONCLUSIONS

ARP attacks can be prevented by using packet filtering,

port security settings, or separate device addition methods

[4]. These solutions have several issues, including economic

inefficiency, use of system resources, and compatibility

aspects. In this study, an algorithm that can dynamically

prevent spoofing attacks by the modification of ARP was

proposed.

We focused on broadcasting an ARP reply and an ARP

notification. The broadcast ARP reply was used for checking

whether the ARP information was forged. The broadcast

ARP notification was used for preventing a normal host’s

ARP table from being poisoned. Further, the proposed

algorithm was implemented in Linux Kernel and tested in a

real LAN environment. The results showed that the

designed algorithm can prevent ARP spoofing attacks. In the

same ARP spoofing attacks, the original ARP protocol’s

ARP table was poisoned, but the proposed ARP’s table was

not poisoned. In this mechanism, an ARP notification frame

might be maliciously used for isolating a specific host from

a network. However, an ARP notification on the network

means that any existing types of ARP attacks can be

detected. Furthermore, this algorithm can prevent MITM

attacks in which an attacker intercepts and forges a victim’s

frames.

Further studies focusing on solutions for a malicious use

of ARP notification are needed, and a study on the Internet

Engineering Task Force (IETF)’s Source Address Validation

Improvements (SAVI) protocols is planned.

ACKNOWLEDGMENTS

This research was financially supported by the Ministry

of Education (MOE) and National Research Foundation of

Korea (NRF) through the Human Resource Training Project

for Regional Innovation (No. 2013H1B8A2032154) and

a grant (12-TI-C01) from Advanced Water Management

Research Program funded by Ministry of Land, Infra-

structure and Transport of Korea.

REFERENCES

[1] D. C. Plummer, “An Ethernet address resolution protocol,” RFC

826, 1982.

[2] W. R. Stevens, TCP/IP Illustrated (Volume 1. The Protocols).

Reading, MA: Addison-Wesley, 1994.

[3] R. Braden, “Requirements for Internet hosts: communication

layers,” RFC 1122, 1989.

[4] W. R. Stevens and G. R. Wright, TCP/IP Illustrated (Volume21.

The Implementation). Reading, MA: Addison-Wesley, 1994.

J. lnf. Commun. Converg. Eng. 12(3): 154-160, Sep. 2014

http://dx.doi.org/10.6109/jicce.2014.12.3.154 160

[5] Linux source code [Internet], Available: http://www.kernel.org/

pub/linux/kernel/v2.6.

[6] S. G. Bhirud and V. Katkar, “Light weight approach for IP-ARP

spoofing detection and prevention,” in Proceedings of the 2nd

Asian Himalayas International Conference on Internet (AH-ICI),

Kathmandu, Nepal, pp. 1-5, 2011.

[7] W. Xing, Y. Zhao, and T. Li, “Research on the defense against

ARP spoofing attacks based on WinPcaP,” in Proceedings of the

2nd International Workshop on Education Technology and

Computer Science (ETCS), Wuhan, China, pp. 762-765, 2010.

[8] K. Wehrle, F. Pahlke, H. Ritter, D. Muller, and M. Bechler, The

Linux Networking Architecture: Design and Implementation of

Network Protocols in the Linux Kernel. Upper Saddle River, NJ:

Pearson Prentice Hall, 2004.

[9] J. Corbet, Linux Device Drivers, 3rd ed. Beijing: O’Reilly, 2005.

[10] A. Bremler-Barr and H. Levy, “Spoofing prevention method,” in

Proceedings of the 24th Annual Joint Conference of the IEEE

Computer and Communications Societies, Miami, FL, pp. 536-547,

2005.

[11] K. Yaghmour, Building Embedded Linux Systems, 2nd ed.

Sebastopol, CA: O’Reilly, 2008.

Dr. Kang received her B.S., M.S., and Ph.D. in Information and Communication Engineering from Hanbat National
University, Republic of Korea, in 1997, 2001, and 2014, respectively. She was Principal Research Engineer at
R&D Center, Fumate Co., Ltd. from 2002 to 2012. Her main research interests include computer networks,
wireless communication, cryptography, and network security.

Prof. Lee received his B.S. and M.S. in Electrical & Electronic Engineering from Dongshin University and his PhD
degree from Dept. of IT Engineering, Mokwon University, in 2001, 2003, and 2007, respectively. He also received
his second PhD degree from Graduate School of Engineering, Fukuoka Institute Technology (FIT), Japan, in
2012. He was Senior Engineer at R&D Center, Fumate Co., Ltd. from 2007 to 2009. Further, he was Research
Professor at Dept. of Information Communication Engineering, Chosun University from 2009 to 2011. Since 2012,
he has worked as Assistant Professor in Division of Computer Engineering, Mokwon University, Korea. He also
serves as a guest editor and is a member of the editorial staff and review committee of the Information Journal,
Security and Communication Networks (Wiley InterScience), Wireless Personal Communications (Springer),
International Journal of Communication Systems (Wiley InterScience), IET Signal Processing (IET Journal), IET
Communications (IET Journal), and many other journals. His current research interests include UWB, wireless
multimedia communication, software engineering, network transmission scheme, and ubiquitous sensor networks.
He is a member of the KITCS, KICS, KIICE, KIIT, and KONI, and a fellow member of FTRA.

Dr. Kim received his B.S. degree from the School of Electronic Engineering, Yonsei University, Korea, in 1990,
and his M.S. and Ph.D. in Electronic Engineering from Yonsei University, Seoul, Korea, in 1992 and 1996,
respectively. From 1996 to 1999, he worked as a communication systems engineer at Daewoo Electronics Ltd. He
joined the Electronics and Telecommunications Research Institute (ETRI) in 1999. His main research interests
include wireless sensor networks and security.

Dr. Kim received his B.S., M.S., and Ph.D. degrees from Department of Electronic Engineering, Korea University,
in 1987, 1989, and 1994, respectively. He is currently a full professor at the Department of Information and
Communication Engineering of the Hanbat National University. His main research interests include computer
networks, embedded system SW, cryptography, and network security.

http://www.kernel.org/%20pub/linux/kernel/v2.6
http://www.kernel.org/%20pub/linux/kernel/v2.6

