• Title/Summary/Keyword: dynamic influence

Search Result 1,880, Processing Time 0.03 seconds

The influence of magmatic rock thickness on fracture and instability law of mining surrounding rock

  • Xue, Yanchao;Sun, Wenbin;Wu, Quansen
    • Geomechanics and Engineering
    • /
    • v.20 no.6
    • /
    • pp.547-556
    • /
    • 2020
  • An understanding of the influence of MR (Magmatic Rock) thickness on the surrounding rock behaviors is essential for the prevention and management of dynamic disasters in coal mining. In this study, we used FLC3D to study the breaking and instability laws of surrounding rock with different MR thicknesses in terms of strata movement, stress and energy. The mechanism of dynamic disasters was revealed. The results show that the thicker the MR is, (1) the smaller the subsidence of the overlying strata is, but the subsidence span of the overlying strata become wider, and the corresponding displacement deformation value of the basin edge become smaller. (2) the slower the growth rate of abutment pressure in front of the working face is, but the peak value is smaller, and the influence range is larger. The peak value decreases rapidly after the breaking, and the stress concentration coefficient is maintained at about 1.31. (3) the slower the peak energy in front of coal wall, but the range of energy concentration increases (isoline "O" type energy circle). Finally, a case study was conducted to verify the disaster-causing mechanism. We anticipate that the research findings presented herein can assist in the control of dynamic hazards.

The Influence of Tip-mass on Dynamic Characteristics of Rotating Cantilever Pipe Conveying Fluid (유체유동을 갖는 회전 외팔 파이프의 동특성에 미치는 끝단질량의 영향)

  • Yoon, Han-Ik;Choi, Chang-Soo;Son, In-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.11
    • /
    • pp.1824-1830
    • /
    • 2003
  • The vibrational system of this study is consisted of a rotating cantilever pipe conveying fluid and the tip mass. The equation of motion is derived by using the Lagrange equation. The influences of the rotating angular velocity and the velocity of fluid flow in a cantilever pipe have been studied on the dynamic characteristics of a rotating cantilever pipe by the numerical method. The effects of a tip mass on the dynamic response of a cantilever pipe are also studied. The tip-amplitude and maximum tip-deflection of each direction are directly proportional to the tip mass of the cantilever pipe in steady state. It identifies that the influence of the fluid velocity and the rotating angular velocity of the cantilever pipe give much variation the bending tip-displacement of steady state and the bending tip-displacement of non-steady state, respectively. The influence of the rotating angular velocity gives much the deflection of axial direction.

Influence of incident angles of earthquakes on inelastic responses of asymmetric-plan structures

  • Nguyen, Van Tu;Kim, Dookie
    • Structural Engineering and Mechanics
    • /
    • v.45 no.3
    • /
    • pp.373-389
    • /
    • 2013
  • This paper presents the influence of incident angles of earthquakes on inelastic dynamic responses of asymmetry single story buildings under seismic ground motions. The dynamic responses such as internal forces and rotational ductility factor are used to evaluate the importance of the incident angles of ground motions in the inelastic range of structural behavior. The base shear and torque (BST) response histories of the resisting elements and of the building are used to prove that the shape of the BST surface of the building can be a practical tool to represent those of all resisting elements. This paper also shows that the different global forces which produce the maximum demands in the resisting elements tend to converge toward a single distribution in a definable intensity range, and this single distribution is related to the resistance distribution of the building.

A case study about influence of joint velocity on dynamic manipulability of robot arm (로봇팔의 관절 각속도가 동적 조작도에 미치는 영향 분석)

  • 정용우;전봉환;이지홍
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2725-2728
    • /
    • 2003
  • The manipulability of robot provides useful Information for the design and path planning of robots. This paper shows an influence of joint velocities to acceleration of robot end-effector using a dynamic manipulability polytope. The main idea of this paper is that the dynamic manipulability polytope of robot can be divided to three intermediate polytope, the torque-dependant polytope, velocity-dependent polytope, and gravity-dependant polytope. The velocity-dependant polytope is made from the limits of robot joint velocities while the torque-dependant polytope is made from the limits of the joint torques. Combining of these two intermediate polytopes and considering the gravity-dependant polytope, the overall dynamic manipulability polytope of robot is obtained. This investigation will be useful on the field of space robot and high-speed application.

  • PDF

Dynamic Modeling of Ball Joint in Suspension (현가장치 볼 조인트의 동적 모델 연구)

  • 김숙희;한형석;노규석;김명규;김기훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1561-1564
    • /
    • 2003
  • In the dynamic analysis model of full vehicles, the ball joint is usually modeled as an ideal joint. Searching a ball joint, the engineering plastic covers metal and the plastic has little compliance. It is expected that the compliance will physically have an influence on load transfer. This thesis presents a dynamic model considering the compliance of a ball joint, and studies an influence related to load transfer. It models the compliance of a ball joint to 3 directional spring. Likewise, it researches the load of a ball joint via a four-post simulation of a full vehicle, comparing with a model considered compliant and the model of an ideal joint. As a result, the difference between the compliance and the ideal joint model was determined. For this reasons, to conduct precision load prediction for durability analysis, dynamic analysis considering the compliance of bali joint should be required.

  • PDF

A Study on the Chatter Analysis & Dynamic Stability of Drilling Mchine (드릴링 M/C의 Chatter 해석과 동적안정성에 관한 연구)

  • Park, Jong-Kweon;Lee, Hu-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.6 no.2
    • /
    • pp.77-87
    • /
    • 1989
  • This study is carried out to estimate the influence of cutting speed on the dynamic stability of a drilling machine. The theoretical stabilityu chart is constructed by using the measurd dynamic characteristics of the drilling machine. The critical cutting width and speed predicted from the stability chart show excellent agreements with those measured. Therefore it is confirmed that the analysis technique used in this study is useful for the prediction of the dynamic instability and improvement of the dynamic characteristics of drilling machines.

  • PDF

Influence of Thermal Expansion on Eccentricity and Critical Speed in Dry Submersible Induction Motors

  • Lv, Qiang;Bao, Xiaohua;He, Yigang
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.106-113
    • /
    • 2014
  • Rotor eccentricity is one of the major factors that directly influence the security of horizontal electrical machines, and the critical speed of the shaft has a close relationship with vibration. This paper deals with the influence of thermal expansion on the rotor eccentricity and critical speed in large dry submersible motors. The dynamic eccentricity (where the rotor is still turning around the stator bore centre but not its own centre) and critical speed of a three-phase squirrel-cage submersible induction motor are calculated via hybrid analytical/finite element method. Then the influence of thermal expansion is investigated by simulation. It is predicted from the study that the thermal expansion of the rotor and stator gives rise to a significant air-gap length decrement and an inconspicuous slower critical speed. The results show that the thermal expansion should be considered as an impact factor when designing the air gap length.

Effects of stiffening rings on the dynamic properties of hyperboloidal cooling towers

  • Zhang, Jun-Feng;Chen, Huai;Ge, Yao-Jun;Zhao, Lin;Ke, Shi-Tang
    • Structural Engineering and Mechanics
    • /
    • v.49 no.5
    • /
    • pp.619-629
    • /
    • 2014
  • As hyperboloidal cooling towers (HCTs) growing larger and slender, they become more sensitive to gust wind. To improve the dynamic properties of HCTs and to improve the wind resistance capability, stiffening rings have been studied and applied. Although there have been some findings, the influence mechanism of stiffening rings on the dynamic properties is still not fully understood. Based on some fundamental perceptions on the dynamic properties of HCTs and free ring structures, a concept named "participation degree" of stiffening rings was proposed and the influence mechanism on the dynamic properties was illustrated. The "participation degree" is determined by the modal deform amplitude and latitude wave number of stiffening rings. Larger modal deform amplitude and more latitude waves can both result in higher participation degree and more improvement to eigenfrequencies. Also, this concept can explain and associate the pre-existing independent findings.

Influence of failed blade-pitch-control system to FOWT by aero-elastic-control-floater-mooring coupled dynamic analysis

  • Bae, Yoon Hyeok;Kim, Moo-Hyun
    • Ocean Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.295-307
    • /
    • 2013
  • More FOWTs (floating offshore wind turbines) will be installed as relevant regulations and technological hurdles are removed in the coming years. In the present study, a numerical prediction tool has been developed for the fully coupled dynamic analysis of FOWTs in time domain including aero-loading, tower elasticity, blade-rotor dynamics and control, mooring dynamics, and platform motions so that the influence of rotor-control dynamics on the hull-mooring performance and vice versa can be assessed. The developed coupled analysis program is applied to Hywind spar design with 5 MW turbine. In case of spar-type floaters, the control strategy significantly influences the hull and mooring dynamics. If one of the control systems fails, the entire dynamic responses of FOWT can be significantly different. Therefore, it is important to maintain various control systems in a good operational condition. In this regard, the effects of failed blade pitch control system on FOWT performance including structural and dynamic responses of blades, tower, and floater are systematically investigated. Through this study, it is seen that the failure of one of the blade pitch control system can induce significant dynamic loadings on the other blades and the entire FOWT system. The developed technology and numerical tool are readily applicable to any types of floating wind farms in any combinations of irregular waves, dynamic winds, and steady currents.

An Efficient Grid Method for Continuous Skyline Computation over Dynamic Data Set

  • Li, He;Jang, Su-Min;Yoo, Kwan-Hee;Yoo, Jae-Soo
    • International Journal of Contents
    • /
    • v.6 no.1
    • /
    • pp.47-52
    • /
    • 2010
  • Skyline queries are an important new search capability for multi-dimensional databases. Most of the previous works have focused on processing skyline queries over static data set. However, most of the real applications deal with the dynamic data set. Since dynamic data set constantly changes as time passes, the continuous skyline computation over dynamic data set becomes ever more complicated. In this paper, we propose a multiple layer grids method for continuous skyline computation (MLGCS) that maintains multiple layer grids to manage the dynamic data set. The proposed method divides the work space into multiple layer grids and creates the skyline influence region in the grid of each layer. In the continuous environment, the continuous skyline queries are only handled when the updating data points are in the skyline influence region of each layer grid. Experiments based on various data distributions show that our proposed method outperforms the existing methods.