• Title/Summary/Keyword: dynamic impact test

Search Result 537, Processing Time 0.026 seconds

Experimental Analysis on Vibration of Composite Plate by Using FBG Sensor System (브래그 격자 센서 시스템을 이용한 복합재 평판 진동의 실험적 해석)

  • Kim, Dae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.5
    • /
    • pp.436-441
    • /
    • 2009
  • A fiber optic sensor is prospective to be applied to structural health monitoring. Especially, a fiber Bragg grating(FBG) sensor is one of the most popular sensors for the structural health monitoring. The FBG sensor has several demodulation systems for tracking the shift of the Bragg wavelength. The dynamic bandwidth is dependent on the demodulation system. In this paper, the sensing mechanism is that the slope of the optical spectrum of FBG could be used as its sensitivity when the tunable laser shot the monochromatic laser wavelength at the highest slope point. In this technique, the high sensitivity is guaranteed even though the sensing range is limited. In an example of the application, the composite plate embedding a FBG sensor was manufactured by using an autoclave method and the above sensing mechanism was applied to the composite plate. Firstly, the natural frequencies of the plate were successfully measured by the FBG sensor during the impact hammer test. Secondly, a high-power speaker was used to force the plate to be vibrated at the specific frequency that was one of the natural frequencies. During the shaking, the FBG sensor measures the dynamic characteristics and ESPI was also used to measure the mode shape. From the two dynamic tests, the availability of the FBG sensor system and the ESPI was proven as a technique for measuring the dynamic characteristics of composite structure.

Evaluation of Flexible Pavement Layer Moduli Using the Depth Deflectometer and Flexible Pavement Behavior under Various Vehicle Speeds (아스팔트 콘크리트 포장구조체의 내부처짐에 의한 물성추정과 주행속도에 따른 거동분석)

  • Choi, Jun-Seong;Kin, Soo-Il;Yoo, Ji-hyung
    • International Journal of Highway Engineering
    • /
    • v.2 no.1
    • /
    • pp.135-145
    • /
    • 2000
  • A new procedure needs to be developed to predict the dynamic layer properties under moving truck loads. In this study, a computer code to evaluate layer moduli of asphalt concrete pavement from measured interior deflections at various depths were developed and verified from numerical model tests. Interior deflections of the pavement are measured from Multi-Depth Deflectometer(MDD). It was found that errors between the given and backcalculated moduli in numerical analysis were less than 0.32% for several numerical models tested. When impact loads were used, a technique to determine the depth to virtual rigid base was proposed through the analysis of compressive wave velocity and impulse loading durations. It was found that errors between the given and backcalculated moduli in numerical analysis were less than 0.114% when virtual rigid base was considered in numerical analysis. The pavement behavior must be evaluated under various vehicle speeds when determining the dynamic interaction between the loading vehicle and pavement system. To evaluate the dynamic behavior on asphalt concrete pavement under various vehicle speeds, truck moving tests were carried out. From the test results with respect to vehicle speed, it was found that the vehicle speed had significant effect on actual response of the pavement system. The lower vehicle speed generates the higher interior deflections, and the lower dynamic modulus.

  • PDF

The Effects of Trunk Control Ability on Balance, Gait, and Functional Performance Ability in Patients With Stroke (뇌졸중 환자의 체간 조절 수준이 균형과 보행 및 기능적 수행 능력에 미치는 영향)

  • An, Seung-Heon;Chung, Yi-Jung;Park, Sei-Yeon
    • Physical Therapy Korea
    • /
    • v.17 no.2
    • /
    • pp.33-42
    • /
    • 2010
  • The aim of this study was to investigate correlations of the Trunk Control Test (TCT), Postural Assessment Scale for Stroke (PASS-TC), and Trunk Impairment Scale (TIS) and to compare the TCT, PASS-TC, TIS and its subscales in relation to balance, gait and functional performance ability after stroke. Sixty-two stroke patients attending a rehabilitation program participated in the study. Trunk control was measured with the use of TCT, PASS-TC, TIS balance (Berg Balance scale; BSS), gait ability (10 m walk test), functional performance ability (Tuned Up and Go Test TUG) and the mobility part of the Modified Barthel index (MBI), Fugl Meyer-Upper/Lower Extremity ($FM-U{\cdot}L/E$), The scatter-plot (correlation coefficient) was composed for the total scores of the TCT, PASS-TC, and TIS. The multiple regression analysis was performed to evaluate the impact of trunk control on balance, gait, and functional performance ability. Twenty eight participants (45.2%) and twenty participants (32.3%) obtained the maximum score on the TCT and PASS-TC respectively; no subject reached the maximum score on the Trunk Impairment Scale. There were significant correlations between the TIS and TCT (r=.38, p<.01), PASS-TC (r=.30, p<.05), TCT and PASS-TC (r=.59, p<.01). Stepwise multiple regression analysis showed that the BBS score (${\beta}=.420{\sim}.832$) had slightly more power in predicting trunk control than the $FM-U{\cdot}L/E$. TIS-dynamic sitting balance, TUG and the MBI-mobility part. This study 치early indicates that trunk control is still impaired in stroke patients. Measures of trunk control were significantly related with values of balance, gait and functional performance ability. The results imply that management of trunk rehabilitation after stroke should be emphasized.

Ultrasonic Cavitation Behavior and its Degradation Mechanism of Epoxy Coatings in 3.5 % NaCl at 15 ℃

  • Jang, I.J.;Jeon, J.M.;Kim, K.T.;Yoo, Y.R.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.26-36
    • /
    • 2021
  • Pipes operating in the seawater environment faces cavitation degradation and corrosion of the metallic component, as well as a negative synergistic effect. Cavitation degradation shows the mechanism by which materials deteriorate by causing rapid change of pressure or high-frequency vibration in the solution, and introducing the formation and explosion of bubbles. In order to rate the cavitation resistance of materials, constant conditions have been used. However, while a dynamic cavitation condition can be generated in a real system, there has been little reported on the effect of ultrasonic amplitude on the cavitation resistance and mechanism of composites. In this work, 3 kinds of epoxy coatings were used, and the cavitation resistance of the epoxy coatings was evaluated in 3.5% NaCl at 15 ℃ using an indirect ultrasonic cavitation method. Eleven kinds of mechanical properties were obtained, namely compressive strength, flexural strength and modulus, tensile strength and elongation, Shore D hardness, water absorptivity, impact test, wear test for coating only and pull-off strength for epoxy coating/carbon steel or epoxy coating/rubber/carbon steel. The cavitation erosion mechanism of epoxy coatings was discussed on the basis of the mechanical properties and the effect of ultrasonic amplitude on the degradation of coatings.

Vibration Mode Measurement Test of External Fuel Tank for Aircraft (항공기용 외부연료탱크 진동모드 측정시험)

  • Kim, Hyun-gi;Choi, Hyun Kyung;Kim, Sungchan;Park, Hyung Bae;An, Su Hong;Kim, Young Shin
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.4
    • /
    • pp.88-94
    • /
    • 2022
  • The vibration mode measurement test measures the natural vibration characteristics of the target specimen. The measured natural mode characteristics are compared with the numerical analysis result to verify the reliability of the numerical analysis. If necessary, it is used to supplement the numerical analysis model of the specimen used for the dynamic characteristic analysis. In this paper, the natural frequency and natural mode of the external fuel tank are respectively obtained through the vibration mode measurement test and the numerical analysis, using the finite element model. The results are compared to verify the reliability of the numerical analysis model of the external fuel tank to apply to the entire aircraft model. To measure the vibration mode of the test specimen, a bungee cord was used, to simulate the free boundary condition for the test specimen. And, 3-axis accelerometers were installed on the test specimen. The response characteristics of the test specimen were measured, by excitation with an impact hammer. As a result of the test, after performing the frequency response analysis on the response acceleration, the natural frequency of the test specimen and its vibration mode were confirmed. The reliability of the numerical analysis model was verified by comparing the frequency and vibration mode, obtained through the test and the numerical analysis.

Evaluation of Water Quality Change by Membrane Damage to Pretreatment Process on SDI in Wastewater Reuse (하수재이용에서 전처리 막 손상에 의한 수질변화가 SDI에 미치는 영향평가)

  • Lee, Min Soo;Seo, Dongjoo;Lee, Yong-Soo;Chung, Kun Yong
    • Membrane Journal
    • /
    • v.32 no.4
    • /
    • pp.253-263
    • /
    • 2022
  • This study suggests a guideline for designing unit process of wastewater reuse in terms of a maintenance of the process based on critical parameters to draw a high quality performance of RO unit. Defining the parameters was done by applying membrane integrity test (MIT) in pretreatment process utilizing lab-scale MF. SDI is utilized for judging whether permeate is suitable to RO unit. However, result said TOC concentration matching with particle count analysis is better for judging the permeate condition. When membrane test pressure (Ptest) was measured to derive log removal value in PDT, virgin state of membrane fiber was used to measure dynamic contact angle utilizing surface tension of the membrane fiber. Actually, foulant affects to the state of membrane surface, and it decreases the Ptest value along with time elapsed. Consequently, LRVDIT is also affected by Ptest value. Thus, sensitivity of direct integrity test descends with result of Ptest value change, so Ptest value should be considered not the virgin state of the membrane but its current state. Overall, this study focuses on defining design parameters suitable to MF pretreatment for RO process in wastewater reuse by assessing its impact. Therefore, utilities can acknowledge that the membrane surface condition must be considered when users conduct the direct integrity test so that Ptest and other relative parameter used to calculate LRVDIT are adequately measured.

Sloshing suppression by floating baffle

  • Kang, Hooi-Siang;Md Arif, Ummul Ghafir;Kim, Kyung-Sung;Kim, Moo-Hyun;Liu, Yu-Jie;Lee, Kee-Quen;Wu, Yun-Ta
    • Ocean Systems Engineering
    • /
    • v.9 no.4
    • /
    • pp.409-422
    • /
    • 2019
  • Sloshing is a phenomenon which may lead to dynamic stability and damages on the local structure of the tank. Hence, several anti-sloshing devices are introduced in order to reduce the impact pressure and free surface elevation of liquid. A fixed baffle is the most prevailing anti-sloshing mechanism compared to the other methods. However, the additional of the baffle as the internal structure of the LNG tank can lead to frequent damages in long-term usage as this structure absorbs the sloshing loads and thus increases the maintenance cost and downtime. In this paper, a novel type of floating baffle is proposed to suppress the sloshing effect in LNG tank without the need for reconstructing the tank. The sloshing phenomenon in a membrane type LNG tank model was excited under sway motion with 30% and 50% filling condition in the model test. A regular motion by a linear actuator was applied to the tank model at different amplitudes and constant period at 1.1 seconds. Three pressure sensors were installed on the tank wall to measure the impact pressure, and a high-speed camera was utilized to record the sloshing motion. The floater baffle was modeled on the basis of uniform-discretization of domain and tested based on parametric variations. Data of pressure sensors were collected for cases without- and with-floating baffle. The results indicated successful reduction of surface run-up and impulsive pressure by using a floating baffle. The findings are expected to bring significant impacts towards safer sea transportation of LNG.

Effect of steel fiber volume fraction and aspect ratio type on the mechanical properties of SIFCON-based HPFRCC

  • Kim, Seugnwon;Jung, Haekook;Kim, Yongjae;Park, Cheolwoo
    • Structural Engineering and Mechanics
    • /
    • v.65 no.2
    • /
    • pp.163-171
    • /
    • 2018
  • Plain concrete is a brittle material with a very low tensile strength compared to compressive strength and critical tensile strain. This study analyzed the dynamic characteristics of high-performance fiber-reinforced cementitious composites based on slurry-infiltrated fiber concrete (SIFCON-based HPFRCC), which maximizes the steel-fiber volume fraction and uses high-strength mortar to increase resistance to loads, such as explosion and impact, with a very short acting time. For major experimental variables, three levels of fiber aspect ratio and five levels of fiber volume fraction between 6.0% and 8.0% were considered, and the flexural strength and toughness characteristics were analyzed according to these variables. Furthermore, three levels of the aspect ratio of used steel fibers were considered. The highest flexural strength of 65.0 MPa was shown at the fiber aspect ratio of 80 and the fiber volume fraction of 7.0%, and the flexural strength and toughness increased proportionally to the fiber volume fraction. The test results according to fiber aspect ratio and fiber volume fraction revealed that after the initial crack, the load of the SIFCON-based HPFRCC continuously increased because of the high fiber volume fraction. In addition, sufficient residual strength was achieved after the maximum strength; this achievement will bring about positive effects on the brittle fracture of structures when an unexpected load, such as explosion or impact, is applied.

The Effect of Media Richness, Social Presence, and Life Satisfaction on Continuance Usage Intention or Withdrawal Intention of SNS Users via Relative Deprivation (매체 풍요도, 사회적 존재감 및 생활 만족도가 상대적 박탈감을 통해 SNS 이용자의 이용 지속 의도 또는 이탈 의도에 미치는 영향)

  • Lee, Un-Kon
    • Journal of Distribution Science
    • /
    • v.14 no.10
    • /
    • pp.165-178
    • /
    • 2016
  • Purpose - This study aims to empirically verify the impact of media richness, social presence, and prior life satisfaction on various continual usage or withdrawal behaviors of SNS users via both a positive path of satisfaction and a negative path of relative deprivation. By identifying these causal paths, we observe dynamic interactions of SNS user psychology in a balanced view, and provide some implications about design principles for SNS providers. Research design, data, and methodology - We developed 16 hypothesis based on media richness theory, social presence theory, social comparison theory, the literature about relative deprivation, and the literature about the various reactions of IS users. The rich SNS media, social presence recognition among peer SNS users, and prior life satisfaction could generate positive experience, attitude, and virtuous behavioral intentions among SNS users. At the same time, rich media, low social presence, and low prior life satisfaction could generate relative deprivation and could increase withdrawal behavioral intentions such as refusal to provide information, misrepresentation of information, and removal of uploaded information in SNS. Scenario surveys were conducted to collect data from potential SNS users. Data from 357 surveys were collected and analyzed through a PLS algorithm to test the hypotheses. Results - Media richness, social presence, and prior life satisfaction could significantly increase perceived enjoyment, satisfaction, and behavioral intention of continual usage and knowledge sharing. They also could significantly decrease refusal and misrepresentation intention. Relative deprivation is significantly decreased only by prior life satisfaction. Relative deprivation could not significantly decrease satisfaction, but it could significantly increase misrepresentation and removal intention, which could be regarded as information distortion intention. Conclusions - SNS providers should focus on developing rich media and social presence support because these two variables could impact the positive experiences of SNS users. Moreover, the positive experiences could heavily influence SNS user behavior. Some management is needed to prevent relative deprivation and its consequences of misrepresentation and removal intention. SNS providers should prevent SNS users from excessive image misrepresentation and removal as this information distortion could be the source of relative deprivation.

A Study for the Dynamic Characteristics and Correlation with Test Result of Gantry Robot based on Finite Element Analysis (유한요소해석을 이용한 Gantry Robot의 동특성 및 측정 결과와의 상관관계 연구)

  • Koh, Man Soo;Kwon, Soon Ki;Lee, Soek
    • Journal of Digital Convergence
    • /
    • v.13 no.1
    • /
    • pp.269-274
    • /
    • 2015
  • According to the development of IT industry, prevalence of AOI equipment is spreading, and also requiring the high resolution of the camera used in the equipment. The weight of the camera is increased to obtain a high resolution, and thus increases the vibration displacement is a problem occurring in the picturing, camera motion control also becomes difficult. In this study, using a finite element analysis program NX/NASTRAN, the transient response of the camera was analysed which is subjected to an impact force due to inertia. The finite element analysis result is correlated with laser interferometer measurement. When AOI equipment is restructuring, the correlated finite element analysis model can be used to verify the authenticity of the new design.