• 제목/요약/키워드: dynamic imbalance

검색결과 92건 처리시간 0.028초

Analysis, Modeling and Compensation of Dynamic Imbalance Error for a Magnetically Suspended Sensitive Gyroscope

  • Xin, Chaojun;Cai, Yuanwen;Ren, Yuan;Fan, Yahong;Xu, Guofeng;Lei, Xu
    • Journal of Magnetics
    • /
    • 제21권4호
    • /
    • pp.529-536
    • /
    • 2016
  • Magnetically suspended sensitive gyroscopes (MSSGs) provide an interesting alternative for achieving precious attitude angular measurement. To effectively reduce the measurement error caused by dynamic imbalance, this paper proposes a novel compensation method based on analysis and modeling of the error for a MSSG. Firstly, the angular velocity measurement principle of the MSSG is described. Then the analytical model of dynamic imbalance error has been established by solving the complex coefficient differential dynamic equations of the rotor. The generation mechanism and changing regularity of the dynamic imbalance error have been revealed. Next, a compensation method is designed to compensate the dynamic imbalance error and improve the measurement accuracy of the MSSG. The common issues caused by dynamic imbalance can be effectively resolved by the proposed method in gyroscopes with a levitating rotor. Comparative simulation results before and after compensation have verified the effectiveness and superiority of the proposed compensation method.

Reaction Wheel Disturbance Reduction Method Using Disturbance Measurement Table

  • Cheon, Dong-Ik;Jang, Eun-Jeong;Oh, Hwa-Suk
    • Journal of Astronomy and Space Sciences
    • /
    • 제28권4호
    • /
    • pp.311-317
    • /
    • 2011
  • Momentum changing actuators like reaction wheels and control moment gyros are generally used for spacecraft attitude control. This type of actuators produces force and torque disturbances. These disturbances must be reduced since they degrade the quality of spacecraft attitude control. Major disturbances are mainly due to static and dynamic imbalances. This paper gives attention to the reduction of the static and dynamic imbalance. Force/torque measurement system is used to measure the disturbance of the test reaction wheel. An identification method for the location and magnitude of the imbalance is suggested, and the corrections of the imbalance are performed using balancing method. Through balancing, the static and dynamic imbalance is remarkably reduced.

A New Required Reserve Capacity Determining Scheme with Regard to Real time Load Imbalance

  • Park, Joon Hyung;Kim, Sun Kyo;Yoon, Yong Tae
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권2호
    • /
    • pp.511-517
    • /
    • 2015
  • Determination of the required reserve capacity has an important function in operation of power system and it is calculated based on the largest loss of supply. However, conventional method cannot be applied in future power system, because potential grid-connected distributed generator and abnormal temperature cause the large load imbalance. Therefore this paper address new framework for determining the optimal required reserve capacity taking into account the real time load imbalance. At first, we introduce the way of operating reserve resources which are the secondary, tertiary, Direct Load Control (DLC) and Load shedding reserves to make up the load imbalance. Then, the formulated problem can be solved by the Probabilistic Dynamic Programming (PDP) method. In case study, we divide two cases for comparing the cost function between the conventional method and the proposed method.

반작용휠의 미소진동 측정법에 관한 실험적 연구 (An Experimental Study on Micro-vibration Measurement Methods of a Reaction Wheel)

  • 김대관;오시환;이선호;용기력
    • 한국소음진동공학회논문집
    • /
    • 제21권9호
    • /
    • pp.828-833
    • /
    • 2011
  • A reaction wheel assembly(RWA) is the largest disturbance source that can induce high frequency micro-vibration on an optical payload of satellites. To ensure a tight pointing-stability budget of satellites, the RWA disturbance effect on spacecraft should be accurately analyzed and evaluated for whole design phases. For this purpose, the micro-vibration disturbance of RWA should be precisely measured. In the present study, two measurement methods on RWA micro-vibration disturbances are compared and investigated. One is a free run-down speed test and the other is a constant speed test. The micro-vibration data measured by the two methods are analyzed in terms of spectrum characteristics, static and dynamic imbalance values, and root sum square(RSS) values. The analysis results show that both methods can measure very similar results in time and frequency domains and that the free run-down speed method is more adequate in respects to wheel friction modeling, noise rejection of imbalance and RSS peak evaluation.

고속철도차량용 차륜 불평형에 의한 동적 거동 특성 연구 (Study on the Dynamic Behavior Characteristics due to the Unbalance High Speed Railway Vehicle Wheel)

  • 이승일;송문석
    • 한국산학기술학회논문지
    • /
    • 제17권7호
    • /
    • pp.175-181
    • /
    • 2016
  • 회전체는 질량 중심선이 축의 기하학적 중심선과 일치하지 않을 때 불평형이 발생한다. 윤축은 두 개의 차륜과 한 개의 차축으로 조립되어 철도차량을 주행시키는 회전체 역할을 하고, 차륜 재질의 불균일, 마모, 윤축 조립과정의 오차 등으로 인해 불평형이 발생할 수 있다. 또한 윤축은 축의 직경이 가늘고 고속으로 회전함으로 불평형 질량에 의한 진동의 영향이 더욱 두드러지게 나타나고 이로 인해 철도차량 고속 주행 시 주행안전성 및 주행거동에 영향을 미칠 수 있다. 그러므로 본 연구에서는 차륜 불평형이 고속철도차량의 동적 거동에 미치는 영향을 철도차량 다물체 동역학 해석 도구인 VI-Rail를 이용하여 해석을 수행하였다. 해석결과에서 차륜 불평형량이 증가할수록 철도차량 대차의 임계속도가 감소됨을 확인할 수 있었고, 차륜 불평형량이 주행 중 차량동적거동 악영향을 미침으로 고속주행에서는 반드시 차륜 불평형량에 대한 관리가 필요함을 확인할 수 있었다. 또한 이 연구로 차륜 불평형량의 정적 및 동적 관리 필요성을 국내 철도차량 운영기관에 제시하였다.

A Dynamic Power Distribution Strategy for Large-scale Cascaded Photovoltaic Systems

  • Wang, Kangan;Wu, Xiaojie;Deng, Fujin;Liu, Feng
    • Journal of Power Electronics
    • /
    • 제17권5호
    • /
    • pp.1317-1326
    • /
    • 2017
  • The cascaded H-bridge (CHB) multilevel converter is a promising topology for large-scale photovoltaic (PV) systems. The output voltage over-modulation derived by the inter-module active power imbalance is one of the key issues for CHB PV systems. This paper proposed a dynamic power distribution strategy to eliminate the over-modulation in a CHB PV system by suitably redistributing the reactive power among the inverter modules of the CHB PV system. The proposed strategy can effectively extend the operating region of the CHB PV system with a simple control algorithm and easy implementation. Simulation and experimental results carried out on a seven-level CHB grid-connected PV system are shown to validate the proposed strategy.

Dynamic Paralleling Behaviors of High Power Trench and Fieldstop IGBTs

  • Wu, Yu;Sun, Yaojie;Lin, Yandan
    • Journal of Power Electronics
    • /
    • 제14권4호
    • /
    • pp.788-795
    • /
    • 2014
  • This paper demonstrates the dynamic behaviors of paralleled high power IGBTs using trench and fieldstop technologies. Four IGBTs are paralleled and standard deviation is adopted to represent the imbalance. Experiments are conducted under three different operation conditions and at different temperatures ranging from $-25^{\circ}C$ to $125^{\circ}C$. The experimental results show that operation at very low and very high temperatures usually aggravates the switching behaviors. There is a trade-off between the balance and the losses at low temperatures. These results can help in the design of heat sinks in paralleling applications confronting very low temperatures.

Impact를 이용한 정밀 고속 회전체 불평형 보정 (Correction of mass imbalance of a high precision rotor)

  • 이상봉;인용석;오동호;김하용;이호성;구자춘
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.843-847
    • /
    • 2007
  • The unbalanced mass of a high precision rotor deteriorates mechanical performance of the rotor. The geometrical center of a rotor generally corresponds to the rotational axis of the rotor. However, this alignment carried out with a stationary rotor does not guarantee the dynamic rotor balance. There have been a number of schemes for the correction of the imbalance published for decades especially in the hard drive industry where the issues are directly affecting manufacturing costs and product performances. Realizing the significance of the problem, the present work tries to refine one of the methods that works by applying external impact during a rotor spins. A systematic way to apply the external impact to a rotating rotor has been introduced to minimize imbalance correction process time.

  • PDF

풍력발전기 블레이드 상태 모니터링을 위한 질량 불균형 감지기법 (Sensing Technique of Mass Imbalance for Condition Monitoring of Wind Turbine Blade)

  • 이종원
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제15권1호
    • /
    • pp.209-214
    • /
    • 2011
  • 본 연구에서는 효과적인 풍력발전기 블레이드의 상태 모니터링을 위하여 대표적 손상형태 중 하나인 로터의 질량 불균형으로 인한 이상상태를 감지할 수 있는 기법을 제안하였다. 이를 위하여 수평축 3-블레이드 풍력발전기를 대상으로, 블레이드 1개의 질량을 증가시키면서 로터의 질량 불균형 조건을 구현한 후 전체 풍력발전기에 대한 동력학 시뮬레이션을 수행하였다. 질량 불균형이 발생하면 부가질량에 의한 원심력에 의하여 나셀의 로터 회전축에 대한 횡방향 진동이 발생하고, 부가 질량의 크기가 커질수록 나셀 횡방향 진동의 진폭이 거의 선형적으로 증가함을 알 수 있었다.

협응이동훈련이 아동의 자세 불균형과 보행에 미치는 영향 : 단일사례설계 (Effect of Coordinative Locomotor Training on Postural Imbalance and Gait in Children : A Single Subject Design)

  • 이정아;김진철
    • 대한물리의학회지
    • /
    • 제14권3호
    • /
    • pp.63-71
    • /
    • 2019
  • PURPOSE: This study was examined the effects of coordinative locomotor training (CLT) on the postural imbalance and gait in children. METHODS: Four children were sampled as subjects. A single subject study (A-B-A') was conducted by measuring the following: baseline five sessions;, intervention phase, 15 sessions;, and postline (A') five sessions. The research period was eight weeks. The CLT program consisted of warming-up exercise, main exercise, and finishing exercise, and it was performed for one hour per day. A oneleg standing test (OLST) was performed determine the static balance. A functional reach test (FRT) was performed determine the reactionary balance. To determine the dynamic balance, the time up and go test (TUG) was performed. A 10m walking test (10 MWT) was performed to determine the walking ability. A statistical test was performed through descriptive statistics to present the average and standard deviation, and the variation rate was compared using a visual analysis method with graphs. RESULTS: As a result of CLT application, all four subjects improved the OLST, FRT, TUG, and 10 MWT compared to the intervention period baseline, and postline period. CONCLUSION: CLT appeared to improve the posture imbalance and gait in children.