• Title/Summary/Keyword: dynamic feedback approach

Search Result 144, Processing Time 0.025 seconds

Process Networks of Ecohydrological Systems in a Temperate Deciduous Forest: A Complex Systems Perspective (온대활엽수림 생태수문계의 과정망: 복잡계 관점)

  • Yun, Juyeol;Kim, Sehee;Kang, Minseok;Cho, Chun-Ho;Chun, Jung-Hwa;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.3
    • /
    • pp.157-168
    • /
    • 2014
  • From a complex systems perspective, ecohydrological systems in forests may be characterized with (1) large networks of components which give rise to complex collective behaviors, (2) sophisticated information processing, and (3) adaptation through self-organization and learning processes. In order to demonstrate such characteristics, we applied the recently proposed 'process networks' approach to a temperate deciduous forest in Gwangneung National Arboretum in Korea. The process network analysis clearly delineated the forest ecohydrological systems as the hierarchical networks of information flows and feedback loops with various time scales among different variables. Several subsystems were identified such as synoptic subsystem (SS), atmospheric boundary layer subsystem (ABLS), biophysical subsystem (BPS), and biophysicochemical subsystem (BPCS). These subsystems were assembled/disassembled through the couplings/decouplings of feedback loops to form/deform newly aggregated subsystems (e.g., regional subsystem) - an evidence for self-organizing processes of a complex system. Our results imply that, despite natural and human disturbances, ecosystems grow and develop through self-organization while maintaining dynamic equilibrium, thereby continuously adapting to environmental changes. Ecosystem integrity is preserved when the system's self-organizing processes are preserved, something that happens naturally if we maintain the context for self-organization. From this perspective, the process networks approach makes sense.

Beyond the Behaviorism Embedded in the Hungerford Approach (헝거포드 접근법의 행동주의를 넘어서)

  • 이재영
    • Hwankyungkyoyuk
    • /
    • v.15 no.1
    • /
    • pp.68-82
    • /
    • 2002
  • My responses to Kim Kyung-Ok's Critique on my critique on the Hungerford approach can be summarized as follows; First, it was argued that possible confusions and misunderstandings around the concept of behavior in REB were mainly caused by Hungerford himself who has used the word in several different ways, from a bunch of overt actions to almost all kinds of responses including cognitive skills, without any clear operational definition of it for more than 20 years. It seems to be needed for future users of the word, 'Behavior' to Prevent unnecessary confusions by providing their operational definition of it. Second, REB is too ambiguous to be a legitimate goal of environmental education and too outcome-oriented to be a meaningful measure for environmental education research. Anyone who accept REB as a goal of EE or a measure for research should clearly suggest procedures and criteria for judging the environmental responsibility of actions under consideration. Third, the Hungerford approach has begun by realizing the limit of a linear traditional behavior change system and has been evolving toward a complex model with dynamic interactions among/between cognitive variables and affective variables. However, it still has one-way structural orientation toward 'Behavior' with no feedbacks. Addition of some feedback processes would make the model more flexible and realistic. Finally, both the Hines model and the Hungeford model were established based on a series of behavioristic studies including three doctoral dissertations equiped with a list of actions which were prejudged to be environmentally responsible by the researchers, not by the learners. What they were primarily interested in was not how mind functions during the learning processes but how learners' behavior can be effectively changed. Considering uncertainty and complexity associated with environmental problems, a great deal of efforts ought to be made toward more context-based and less normative studies applying cognitive psychology and quantitative approaches.

  • PDF

DOB-based piezoelectric vibration control for stiffened plate considering accelerometer measurement noise

  • Li, Shengquan;Zhao, Rong;Li, Juan;Mo, Yueping;Sun, Zhenyu
    • Smart Structures and Systems
    • /
    • v.14 no.3
    • /
    • pp.327-345
    • /
    • 2014
  • This paper presents a composite control strategy for the active suppression of vibration due to the unknown disturbances, such as external excitation, harmonic effects and control spillover, as well as high-frequency accelerometer measurement noise in the all-clamped stiffened plate. The proposed composite control action based on the modal approach, consists of two contributions including feedback part and feedforward part. The feedback part is the well-known PID controller, which is widely used to increase the structure damping and improve its dynamic performance close to the resonance frequencies. In order to get better performance for vibration suppression, the weight matrixes is optimized by chaos sequence. Then an improved disturbance observer (IDOB) as the feedforward compensation part is developed to enhance the vibration suppression performance of PID under various disturbances and uncertainties. The proposed IDOB can simultaneously estimate the various disturbances dynamically as well as measurement noise acting on the system and suppress them by feedforward compensation design. A rigorous analysis is also given to show why the IDOB can effectively suppress the unknown disturbances and measurement noise. In order to verify the proposed composite control algorithm (IDOB-PID), the dSPACE real-time simulation platform is used and an experimental platform for the all-clamped stiffened plate active vibration control system is set up. The experimental results demonstrate the effectiveness, practicality and strong anti-disturbances ability of the proposed control strategy.

Development of a Quantitative Model on Adolescent Cyberbullying Victims in Korea: A System Dynamics Approach (시스템다이내믹스를 활용한 국내청소년 사이버불링피해 모델 개발)

  • You, Mi Jin;Ham, Eun Mi
    • Journal of Korean Academy of Nursing
    • /
    • v.49 no.4
    • /
    • pp.398-410
    • /
    • 2019
  • Purpose: This study used a system dynamics methodology to identify correlation and nonlinear feedback structures among factors affecting adolescent cyberbullying victims (CV) in Korea and to construct and verify a simulation model. Methods: Factors affecting CV were identified by reviewing a theoretical background in existing literature and referencing various statistical data. Related variables were identified through content validity verification by an expert group, after which a causal loop diagram (CLD) was constructed based on the variables. A stock-flow diagram (SFD) using Vensim Professional 7.3 was used to establish a CV model. Results: Based on the literature review and expert verification, 22 variables associated with CV were identified and the CLD was prepared. Next, a model was developed by converting the CLD to an SFD. The simulation results showed that the variables such as negative emotions, stress levels, high levels of conflict in schools, parental monitoring, and time spent using new media had the strongest effects on CV. The model's validity was verified using equation check, sensitivity analysis for timestep and simulation with 4 CV adolescent. Conclusion: The system dynamics model constructed in this study can be used to develop intervention strategies in schools that are focused on counseling that can prevent cyberbullying and assist in the victims' recovery by formulating a feedback structure and capturing the dynamic changes observed in CV. To prevent cyberbullying, it is necessary to develop more effective strategies such as prevention education, counseling and treatment that considers factors pertaining to the individual, family, school, and media.

Control of Grid-Connected Photovoltaics Inverter Using Variable Hysteresis Band Current Controller (가변 히스테리시스 전류제어기를 이용한 연계형 태양광 인버터의 제어)

  • Choi, Youn-Ok;Cho, Geum-Bae;Baek, Hyung-Lae;Kim, Si-Kyung;Yu, Gwon-Jong;Song, Jin-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.525-527
    • /
    • 1996
  • Hysteresis current control is one of the simplest techniques used to control currents for high speed drive systems, because of its simplicity of implementation, fast current control response, and inherent peak current limiting capability. However the conventional fixed-band hysteresis control has a variable switching frequency throughout the fundamental period, and consequently the load current harmonics spreaded on the wide frequency range. In this paper, a simple, novel alterative approach is proposed for a variable-hysteresis band current controller which uses feedback techniques to achieve constant switching frequency with good dynamic response. The method is easily implemented in hardware, the resultant controller is easily tuned to a particular load, and has good immunity to variation in PV parameter and dc supply voltage.

  • PDF

Development of Competitive Port Model Using the Hybrid Mechanism of System Dynamic Method and Hierarchical Fuzzy Process Method (SD법과 HFP법의 융합을 이용한 항만경쟁모델의 개발)

  • 여기태;이철영
    • Proceedings of the Korean System Dynamics Society
    • /
    • 1999.08a
    • /
    • pp.105-132
    • /
    • 1999
  • If a system such as a port has a large boundary and complexity, and the system's substance is considered as a black box, forecast accuracy will be very low. Furthermore various components in a port exert significant influence on each other. To copy with these problem the form of structure models were introduced by using SD method. The Competitive Ports Model had several sub-systems consisting of each Unit Port models, and each Unit Port model was made by quantitative, qualitative factors and their feedback loops. The fact that all components of one port have influence on the components of the other ports should be taken into account to construct Competitive Port Models. However, with the current approach that is impossible, and in this paper, therefore, models were simplified by HFP adapted to integrate level variables of unit port models. Although many studies on modelling of port competitive situation have been conducted, both theoretical frame and methodology are still very weak. In this study, a new algorithm called ESD(Extensional System Dynamics) for the evaluation of port competition was presented, and applied to simulate port systems in northeast Asia.

Active Flow Control Technology for Vortex Stabilization on Backward-Facing Step (와류 안정화를 위한 후향계단 유동 능동제어기법)

  • Lee, Jin-Ik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.246-253
    • /
    • 2013
  • This paper addresses the technology of active flow control for stabilizing a flow field. In order for flow field modeling from the control point of view, the huge-data set from CFD(computational fluid dynamics) are reduced by using a POD(Proper Orthogonal Decomposition) method. And then the flow field is expressed with dynamic equation by low-order modelling approach based on the time and frequency domain analysis. A neural network flow estimator from the pressure information measured on the surface is designed for the estimation of the flow state in the space. The closed-loop system is constructed with feedback flow controller for stabilizing the vortices on the flow field.

Dextrous sensor hand for the intelligent assisting system - IAS

  • Hashimoto, Hideki;Buss, Martin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.124-129
    • /
    • 1992
  • The goal of the proposed Intelligent Assisting System - IAS is to assist human operators in an intelligent way, while leaving decision and goal planning instances for the human. To realize the IAS the very important issue of manipulation skill identification and analysis has to be solved, which then is stored in a Skill Data Base. Using this data base the IAS is able to perform complex manipulations on the motion control level and to assist the human operator flexibly. We propose a model for manipulation skill based on the dynamics of the grip transformation matrix, which describes the dynamic transformation between object space and finger joint space. Interaction with a virtual world simulator allows the calculation and feedback of appropriate forces through controlled actuators of the sensor glove with 10 degrees-of-freedom. To solve the sensor glove calibration problem, we learn the nonlinear calibration mapping by an artificial neural network(ANN). In this paper we also describe the experimental system setup of the skill acquisition and transfer system as a first approach to the IAS. Some simple manipulation examples and simulation results show the feasibility of the proposed manipulation skill model.

  • PDF

Spherical Robot for Planetary Explorations: An Approach to Educating Concepts of Mechatronics and Robotics to High School Students

  • Kim, Sooyoung;Kim, Seonje;Kim, Byungkyu;Sen, Soumen
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.2
    • /
    • pp.36-43
    • /
    • 2020
  • Many countries and international organizations have carried out rover missions to explore planetary surfaces. Accordingly, the demand for mechatronics education, which is closely related to building exploratory robots, is also steadily increasing. However, due to the complexity in understanding the background information needed for mechatronics, it is hard for pre-college students to study such process. In this study, we suggest an educational platform for mechatronics using a combined robot kit with a spherical robot and a smartphone application. To provide a visual understanding, the dynamic model of the robot is constructed while analyzing the error between actual driving and a simulation, and the educational algorithm of the game and a feedback method are proposed to improve the learning efficacy by considering the user's level of knowledge of mechatronics. We use this educational spherical robot to develop a curling game platform that can impart engineering education even when students lack significant knowledge.

A study on Real-Time Implementation of Robust Control for Horizontal Articulated Arm with Eight Axis

  • Nguyen, Hoo-Cong;Kim, Jun-Hong;Lee, Hee-Seop
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.3
    • /
    • pp.139-149
    • /
    • 2015
  • In this paper, we describe a new approach to perform real-time implementation of an robust controller for robotic manipulator based on digital signal processors in this paper. The Texas Instruments DSPs chips are used in implementing real-time adaptive control algorithms to provide enhanced motion control performance for dual-arm robotic manipulators. In the proposed scheme, adaptation laws are derived from model reference adaptive control principle based on the improved direct Lyapunov method. The proposed adaptive controller consists of an adaptive feed-forward and feedback controller and time-varying auxiliary controller elements. The proposed control scheme is simple in structure, fast in computation, and suitable for real-time control. Moreover, this scheme does not require any accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the proposed adaptive controller is illustrated by simulation and experimental results for robot manipulator consisting of dual arm with eight degrees of freedom at the joint space and cartesian space.