• Title/Summary/Keyword: dynamic factor

검색결과 2,063건 처리시간 0.028초

직교 이방성체의 동적 응력확대계수에 관한 연구(I) (A Study on the Dynamic Stress Intensity Factor of Orthotropic Materials(I))

  • 이광호;황재석;최선호
    • 대한기계학회논문집
    • /
    • 제17권2호
    • /
    • pp.313-330
    • /
    • 1993
  • The propagating crack problems under dynamic plane mode in orthotropic material is studied in this paper. To analyze the dynamic fracture problems in orthortropic material, it is important to know the dynamic stress components and dynamic displacement components around the crack tip. Therefore the dynamic stress components of dynamic stress field and dynamic displacement components of dynamic displacement field in the crack tip of orthotropic material under the dynamic load and the steady state in crack propagation were derived. When the crack propagation speed approachs to zero, the dynamic stress component and dynamic displacement components derived in this study are identical to the those of static state. In addition, the relationships between dynamic stress intensity factor and dynamic energy release rate are determinded by using the concept of crack closure closure energy with the dynamic stresses and represented according to physical properties of the orthotrophic material and crack speeds. The faster the crack velocity, the greater the stress value of stress components in crack tip. The stress value of the stress component of crack tip is greater when fiber direction coincides with the crack propagation than when fider direction is normal to the crack propagation.

Computer simulation for dynamic wheel loads of heavy vehicles

  • Kawatani, Mitsuo;Kim, Chul-Woo
    • Structural Engineering and Mechanics
    • /
    • 제12권4호
    • /
    • pp.409-428
    • /
    • 2001
  • The characteristics of dynamic wheel loads of heavy vehicles running on bridge and rigid surface are investigated by using three-dimensional analytical model. The simulated dynamic wheel loads of vehicles are compared with the experimental results carried out by Road-Vehicles Research Institute of Netherlands Organization for Applied Scientific Research (TNO) to verify the validity of the analytical model. Also another comparison of the analytical result with the experimental one for Umeda Entrance Bridge of Hanshin Expressway in Osaka, Japan, is presented in this study. The agreement between the analytical and experimental results is satisfactory and encouraging the use of the analytical model in practice. Parametric study shows that the dynamic increment factor (DIF) of the bridge and RMS values of dynamic wheel loads are fluctuated according to vehicle speeds and vehicle types as well as roadway roughness conditions. Moreover, there exist strong dominant frequency resemblance between bounce motion of vehicle and bridge response as well as those relations between RMS values of dynamic wheel loads and dynamic increment factor (DIF) of bridges.

고속철도교량의 동적응답에 의한 충격계수 평가 (Evaluation of Impact Factor of High-Speed Railway Bridges from Dynamic Response under KTX Running)

  • 윤혜진;진원종;곽종원;황의승;김병석
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.1636-1640
    • /
    • 2011
  • To consider dynamic magnification effect at the static design stage, impact factor is applied to design load. Current impact factor adopted EUROCODE without domestic verification through theoretical and experimental studies. This study evaluated impact factor of railway bridges from dynamic response under KTX running. Moving Average Method was applied to calculate impact factor. Investigation considering different type of bridges and tracks including velocity was conducted.

  • PDF

탄성지반상에 놓인 철근콘크리트 축대칭 쉘의 정적 및 동적 해석(II) -축대칭 쉘의 동적 응답 해석을 중심으로 - (Static and Dynamic Analysis of Reinforced Concrete Axisymmetric Shell on the Elastic Foundation -With Application to the Dynamic Response Analysis of Axisymmetric Shell-)

  • 조진구
    • 한국농공학회지
    • /
    • 제38권5호
    • /
    • pp.74-84
    • /
    • 1996
  • Dynamic loading of structures often causes excursions of stresses well into the inelastic range and the influence of geometric changes on the dynamic response is also significant in many cases. Therefore, both material and geometric nonlinearity effects should be considered in case that a dynamic load acts on the structure. For developing a program to analyze the dynamic response of an axisymmetric shell in this study, the material nonlinearity effect on the dynamic response was formulated by the elasto-viscoplastic model highly corresponding to the real behavior of the material. Also, the geometrically nonlinear behavior is taken into account using a total Lagrangian coordinate system, and the equilibrium equation of motion was numerically solved by a central difference scheme. A complete finite element program has been developed and the results obtained by it are compared with those in the references 1 and 2. The results are in good agreement with each other. As a case study of its application, the developed program was applied to a dynamic response analysis of a nuclear reinforced concrete containment structure. The results obtained from the' numerical examples are summarized as follows : 1. The dynamic magnification factor of the displacement and the stress were unrelated with the concrete strength. 2. As shown by the results that the displacement dynamic magnification factor were form 1.7 to 2.3 and the stress dynamic magnification factor from 1.8 to 2.5, the dynamic magnification factor of stress were larger than that of displacement. 3. The dynamic magnification factor of stress on the exterior surface was larger than that on the interior surface of the structure.

  • PDF

Dynamic increase factor for progressive collapse analysis of semi-rigid steel frames

  • Zhu, Yan Fei;Chen, Chang Hong;Yao, Yao;Keer, Leon M.;Huang, Ying
    • Steel and Composite Structures
    • /
    • 제28권2호
    • /
    • pp.209-221
    • /
    • 2018
  • An empirical and efficient method is presented for calculating the dynamic increase factor to amplify the applied loads on the affected bays of a steel frame structure with semi-rigid connections. The nonlinear static alternate path analysis is used to evaluate the dynamic responses. First, the polynomial models of the extended end plate and the top and seat connection are modified, and the proposed polynomial model of the flush end plate connection shows good agreement as compared with experimental results. Next, a beam model with nonlinear spring elements and plastic hinges is utilized to incorporate the combined effect of connection flexibility and material nonlinearity. A new step-by-step analysis procedure is established to obtain quickly the dynamic increase factor based on a combination of the pushdown analysis and nonlinear dynamic analysis. Finally, the modified dynamic increase factor equation, defined as a function of the maximum ratio value of energy demand to energy capacity of an affected beam, is derived by curve fitting data points generated by the different analysis cases with different column removal scenarios and five types of semi-rigid connections.

교량의 충격계수에 관한 연구 (A Study on the Impact Factor of Bridges)

  • 윤일로;류택은
    • 한국산업융합학회 논문집
    • /
    • 제7권2호
    • /
    • pp.161-166
    • /
    • 2004
  • The impact factor of bridges is analyzed based on experimental data to examine the characteristics of the dynamic responses of bridges. The experimental impact factors are compared with the impact factor of Korean Highway Design Specification and Japan T-load in terms of the span length. According to the superstructural types of bridges, the variation of the impact factor is analyzed. When vehicles are passing on a bridge, the dynamic effect acts on the bridge impact factor more than at the time of design because of the velocity of vehicles, the surface roughness reduction due to the deterioration of the bridge deck pavement, and the disconnection of the bridge entrance and the expansion joint. Because the actual value is greater than the expected value at the time of design, the dynamic response of the bridge accelerates the deterioration of the bridge due to the accumulation of fatigue, and the bridge's life-time is shortened and can have an influence on the serviceability and safety of the bridge.

  • PDF

바닥충격음 완충재의 동탄성계수 특성 및 측정 영향인자 (A Study On the Property and Influence Factor in Measuring of the Dynamic Stiffness of Damping Materials)

  • 김경우;최현중;강재식;양관섭
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1256-1259
    • /
    • 2006
  • The purpose of this study was to investigate the current status and influence factor in measuring the dynamic stiffness of damping materials. The property of the dynamic stiffness of damping materials was tested and analysed in condition such as the size of test samples and the change of relative humidity in heating chamber. Test results showed that the dynamic stiffness of after-heating was lower than that of before-heating in most samples and the change of relative humidity in heating chamber got little influence of the dynamic stiffness. The resonant frequency of test sample decreased $2{\sim}7Hz$ as the decrease of the size of sample. Because it was increased that total mass per unit area of sample, the change of dynamic stiffness had little influence.

  • PDF

Effects of damping ratio on dynamic increase factor in progressive collapse

  • Mashhadi, Javad;Saffari, Hamed
    • Steel and Composite Structures
    • /
    • 제22권3호
    • /
    • pp.677-690
    • /
    • 2016
  • In this paper, the effect of damping ratio on nonlinear dynamic analysis response and dynamic increase factor (DIF) in nonlinear static analysis of structures against column removal are investigated and a modified empirical DIF is presented. To this end, series of low and mid-rise moment frame structures with different span lengths and number of storeys are designed and the effect of damping ratio in DIF is investigated, performing several nonlinear static and dynamic analyses. For each damping ratio, a nonlinear dynamic analysis and a step by step nonlinear static analysis are carried out and the modified empirical DIF formulas are derived. The results of the analysis reveal that DIF is decreased with increasing damping ratio. Finally, an empirical formula is recommended that relates to damping ratio. Therefore, the new modified DIF can be used with nonlinear static analysis instead of nonlinear dynamic analysis to assess the progressive collapse potential of moment frame buildings with different damping ratios.

직선베벨기어의 동특성해석에 관한 연구 (A Study on Dynamic Characteristic Analysis of Straight Bevel Gear)

  • 류성기;신귀수
    • 한국정밀공학회지
    • /
    • 제12권12호
    • /
    • pp.157-164
    • /
    • 1995
  • Straight belvel gear is used mainly for steering system, final reduction and differential gear in the automobile. The more high load, high velocity driving bevel gear, the more unsafe and unpleasant. In thid study, we get a kinematic equation by modelling straight bevel gear pair with simple elastic system, the dynamic characteristic analysis about this system, we got the dynamic load factor of tooth surface. Comparing the value of dynamic load factor by calculation with the measured value of Terauchi's experimental results is similar. We think it useful to analysis the vibration and the noise of straight bevel gear in operation with the analytic method of dynamic load of straight bevel gear using in this study.

  • PDF

Behavior factor of vertically irregular RCMRFs based on incremental dynamic analysis

  • Habibi, Alireza;Gholami, Reza;Izadpanah, Mehdi
    • Earthquakes and Structures
    • /
    • 제16권6호
    • /
    • pp.655-664
    • /
    • 2019
  • Behavior factor of a structure plays a crucial role in designing and predicting the inelastic responses of it. Recently, irregular buildings have been interested in many designers. To design irregular structures, recognizing the inelastic behavior of them is necessary. The main objective of this study is to determine the behavior factor of irregular Reinforced Concrete Moment Resisting Frames (RCMRFs) via nonlinear Incremental Dynamic Analysis (IDA). To do so, first, several frames are designed according to the regulations of the Iranian national building code. Then the nonlinear incremental dynamic analysis is performed on these structures and the behavior factors are achieved. The acquired results are compared with those obtained using pushover analysis and it is shown that the behavior factors acquired from the nonlinear incremental dynamic analysis are somewhat larger than those obtained from pushover analysis. Eventually, two practical relations are proposed to predict the behavior factor of irregular RCMRFs. Since these relations are based on the simple characteristics of frames such as: irregularity indices, the height and fundamental period, the behavior factor of irregular RCMRFs can be achieved efficiently using these relations. The proposed relations are applied to design of four new irregular RCMRFs and the outcomes confirm the accuracy of the aforementioned relations.