• Title/Summary/Keyword: dynamic excitation

Search Result 924, Processing Time 0.028 seconds

Dynamic Analysis for Mechanical Systems with Multi-Degree of Freedom under Base Excitation Using Relative Acceleration (상대 가속도를 이용한 기초 가진을 받는 다자유도 기계 시스템의 동적 해석)

  • Lee, Tae Won
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.3
    • /
    • pp.36-41
    • /
    • 2020
  • Mechanical systems installed in transport devices, such as vehicles, airplanes, and ships, are mostly subject to translational accelerations at the joints during operations. This base acceleration excitation has a large influence on the performance of the system, therefore, its response must be well analyzed. However, the existing methods for dynamic analysis of structures have some limitations in use. This study presents a new numerical method using relative acceleration to solve these limitations. If the governing equation of motion is linear and the mass matrix, the damping matrix, and the stiffness matrix are constant over time in the finite element analysis, the proposed method can be applied to the transient behavior analysis and the harmonic response analysis of the structure. Because it is not necessary to introduce a virtual mass and the rigid body motions are removed from the analysis, it is possible to use not only the direct integration method in the time domain but also the mode superposition method to obtain the dynamic responses. This paper demonstrates with three examples how the present method is suitable for the dynamic analysis of a structure with multi-degree of freedom.

Dynamic response of concrete beams reinforced by Fe2O3 nanoparticles subjected to magnetic field and earthquake load

  • Mohammadian, Hossein;Kolahchi, Reza;Bidgoli, Mahmood Rabani
    • Earthquakes and Structures
    • /
    • v.13 no.6
    • /
    • pp.589-598
    • /
    • 2017
  • In this paper, dynamic response of the horizontal concrete beam subjected to seismic ground excitation is investigated. The structure is reinforced by $Fe_2O_3$ nanoparticles which have the magnetic properties. The hyperbolic shear deformation beam theory (HSDBT) is used for mathematical modeling of the structure. Based on the Mori-Tanaka model, the effective material properties of concrete beam is calculated considering the agglomeration of $Fe_2O_3$ nanoparticles. Applying energy method and Hamilton's principle, the motion equations are derived. Harmonic differential quadrature method (HDQM) along with Newmark method is utilized for numerical solution of the motion equations. The effects of different parameters such as volume fraction and agglomeration of $Fe_2O_3$ nanoparticles, magnetic field, boundary conditions and geometrical parameters of concrete beam are studied on the dynamic response of the structure. In order to validation of this work, an exact solution is used for comparing the numerical and analytical results. The results indicated that applying magnetic field decreases the of the structure up to 54 percent. In addition, increase too much the magnetic field (Hx>5e8 A/m) does not considerable effect on the reduction of the maximum dynamic displacement.

Experimental Study of the Dynamic Characteristics of Rubber Mounts for Agricultural Tractor Cabin

  • Choi, Kyujeong;Oh, Jooseon;Ahn, Davin;Park, Young-Jun;Park, Sung-Un;Kim, Heung-Sub
    • Journal of Biosystems Engineering
    • /
    • v.43 no.4
    • /
    • pp.255-262
    • /
    • 2018
  • Purpose: To obtain the dynamic characteristics (spring stiffness and damping coefficient) of a rubber mount supporting a tractor cabin in order to develop a simulation model of an agricultural tractor. Methods: The KS M 6604 rubber mount test method was used to test the dynamic characteristics of the rubber mount. Of the methods proposed in the standard, the resonance method was used. To perform the test according to the standard, a base excitation test device was constructed and the accelerations were measured. Results: Displacement transmissibility was measured by varying the frequency from 3-30 Hz. The vibration transmissibility at resonance was confirmed, and the dynamic stiffness and damping coefficient of the rubber mount were obtained. The front rubber mount has a spring constant of 1247 N/mm and damping ratio of 3.27 Ns/mm, and the rear rubber mount has a spring constant of 702 N/mm and damping ratio of 1.92 Ns/mm. Conclusions: The parameters in the z-direction were obtained in this study. In future studies, we will develop a more complete tractor simulation model if the parameters for the x- and y-directions can be obtained.

Study of the dynamic behavior of porous functionally graded suspension structural systems using finite elements method

  • Ayman E., Nabawy;Ayman M.M., Abdelhaleem;Soliman. S., Alieldin;Alaa A., Abdelrahman
    • Steel and Composite Structures
    • /
    • v.45 no.5
    • /
    • pp.697-713
    • /
    • 2022
  • In the context of the finite elements method, the dynamic behavior of porous functionally graded double wishbone vehicle suspension structural system incorporating joints flexibility constraints under road bump excitation is studied and analyzed. The functionally graded material properties distribution through the thickness direction is simulated by the power law including the porosity effect. To explore the porosity effects, both classical and adopted porosity models are considered based on even porosity distribution pattern. The dynamic equations of motion are derived based on the Hamiltonian principle. Closed forms of the inertia and material stiffness components are derived. Based on the plane frame isoparametric Timoshenko beam element, the dynamic finite elements equations are developed incorporating joint flexibilities constraints. The Newmark's implicit direct integration methodology is utilized to obtain the transient vibration time response under road bump excitation. The presented procedure is validated by comparing the computational model results with the available numerical solutions and an excellent agreement is observed. Obtained results show that the decrease of porosity percentage and material graduation tends to decrease the deflection as well as the resulting stresses of the control arms thus improving the dynamic performance and increasing the service lifetime of the control arms.

Development and Analysis of a Two-Phase Excitation Switched Reluctance Motor with Novel Winding Distribution Used in Electric Vehicles

  • Zhu, Yueying;Yang, Chuantian;Yue, Yuan;Zhao, Chengwen;Zhang, Yan
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2364-2375
    • /
    • 2018
  • Two-phase simultaneous excitation mode of the switched reluctance motor (SRM) has been shown to effectively improve the average torque output compared with traditional single-phase excitation mode. But the torque ripple of the two-phase excitation SRM with traditional winding distribution increases because of the inconsistent electromagnetic field. To reduce the torque ripple, a two-phase excitation 8/6 SRM with novel winding distribution is proposed in this paper. The static torques generated by various magnetic circuits are analyzed and obtained to verify the torque increase. Then the electromagnetic characteristics of the proposed SRM are investigated by the numerical calculation method in detail, including flux linkage, inductance, and torque. Finally, an experiment for measuring the SRM static electromagnetic characteristics and dynamic performance is designed and performed based on the novel mode, and the comparing results show that the proposed two-phase SRM is effective.

A Study On The Acoustic Noise Characteristics of Hard Disk Drive Due To The Structural Excitation Of Spindle Motor (하드디스크 드라이브에 있어서 스핀들모터의 구조적 가진에 따른 시스템의 소음 특성에 관한 연구)

  • Son, Young;Hwang, Tae-Yeon;Kang, Seong-Woo;Han, Yun-Sik;Koo, Ja-Choon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1549-1554
    • /
    • 2000
  • HDD structure is excited by the dynamic motion of disk-spindle motor components. Those excitations which are generated at stator and magnet rotor, at bearings and from disk dynamics, are transmitted through motor spindle and flange to HDD cover and base. The operational deflection shape measurement can show the structural excitation patterns at the most influent frequency on the acoustic noise level. One of those components is the axial excitation along spindle, and the other is the local orbital excitation at contact area of motor flange and base. To make a reduction of those structural transmission excitations, the structure of spindle motor is modified to the direction of reinforcement at transmission path without change of bearings, magnet and coil. Some excitation of spindle motor component carrying out essential function is unavoidable. So it is the efficient way of HDD noise improvement to control the structural transmission of excitation.

  • PDF

A study of response control on the passive coupling element between two parallel structures

  • Zhu, Hongping;Iemura, Hirokazu
    • Structural Engineering and Mechanics
    • /
    • v.9 no.4
    • /
    • pp.383-396
    • /
    • 2000
  • A new structure-vibration-control approach is proposed which uses a passive coupling element between two parallel structures to reduce the seismic response of a system due to earthquake excitation. Dynamic characteristics of the two coupled single-degree-freedom systems subject to stationary white-noise excitation are examined by means of statistical energy analysis (SEA) techniques. Optimal parameters of the passive coupling element such as damping and stiffness under different circumstances are determined with an emphasis on the influence of the structural parameters of the system on the optimal parameters and control effectiveness. Numerical results including the root mean square values of the response due to the filtered white-noise excitation and the time-histories of response to El Centro 1940 NS excitation are presented.

A Response Characteristics Analysis of Synchronous Machine Generator According to an Exciter Models (여자기 모델에 따른 동기 발전기 단자전압 응답 특성분석)

  • Im, Ik-Heon;Ryu, Hong-U;Kim, Chan-Gi;Kim, Gyeong-Cheol;Kim, Jeong-Hun
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.368-371
    • /
    • 1996
  • The basic function of an excitation system is to provide direct current to the synchronous machine field winding. In addition, the excitation system performs control and protective functions essential to a satisfactory performance of a power system by controlling the field voltage and thereby the field current. This paper describes the characteristics and modeling of different types of excitation systems and discusses dynamic performances. In this paper, we modified IEEE ACIA and STIA excitation system to simple system. The automatic voltage control system which had been developed by KEPRI is used for experiments and simulations.

  • PDF

Oil Whirl Effects on Rotor-Bearing System Identifications by Modal Testing

  • Jei, Yang-Gyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1991.04a
    • /
    • pp.105-110
    • /
    • 1991
  • Oil whirl effects on system identification during modal testings are discussed. When the forward rotating excitations act, the oil whirl effects seriously appear. But when the backward rotating and uni-directional excitations act, and the magnitude of forward excitation is small, oil whirl effect do not appear in forced response function. The results of simulation of oil whirl effects during modal testing are well coincident with those of experiments. With the uni-directional excitation technique the linearized dynamic coefficients of fluid film bearings and seals can be estimated more accurately than with the circular rotating excitation technique. But with the circular excitation technique oil whirl effects can be well investigated.

  • PDF

A Numerical Study on the Simultaneous Identification of Excitation Force and Restoring Characteristic in Linear Forced Oscillation System (선형 조화 가진 시스템에서의 외부 가진력 및 복원 특성 동시 인식에 대한 수치 연구)

  • Jang, Taek Soo;Park, Jinsoo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.12
    • /
    • pp.943-947
    • /
    • 2014
  • Recently, a new method for reconstructing a forced nonlinear dynamic system has been proposed; specifically, the simultaneous reconstruction of its excitation as well as restoring characteristics of the system. The reconstruction was just theoretically shown to be possible by measuring the system's responses, based on newly introduced notions, a J-function and a zero-crossing time. However, numerically in the current paper, we are to reconstruct a linear system, i.e., we focus on numerical experiments to reconstruct both the excitation and the linear restoring characteristic of a linear forced oscillating system by using response data, based on the J-function and the zero-crossing time.