• Title/Summary/Keyword: dynamic eccentricity

Search Result 145, Processing Time 0.023 seconds

BLDC 모터를 적용한 로터리 컴프레서 소음 저감에 관한 연구 (Study on the Noise Reduction in the Rotary Compressor Using BLDC Motor)

  • 김진수;임경내;구세진;이장우;전시문
    • 한국소음진동공학회논문집
    • /
    • 제18권9호
    • /
    • pp.920-929
    • /
    • 2008
  • The main noise and vibration source of the BLDC rotary compressor for air conditioner was analyzed by using the measurement of noise and vibration, noise contour, and experimental modal analysis. The source is presumed to the mechanical resonance excited by the electromagnetic attractive force of the BLDC motor. To reduce the excessive noise of the BLDC rotary compressor due to the mechanical resonance, air-gap enlargement and structural dynamic modification were applied in this paper. Its validations were conducted by the analysis of the electromagnetic attractive force which is generated by the BLDC motor and by the measurement of noise and vibration of the BLDC rotary compressor. By enlarging the length of air-gap and conducting the structural dynamic modification, the noise and vibration in the compressor was significantly improved by 4.5 dB(A) and 56 percent, respectively.

Dynamic analysis of thin-walled open section beam under moving vehicle by transfer matrix method

  • Xiang, Tianyu;Xu, Tengfei;Yuan, Xinpeng;Zhao, Renda;Tong, Yuqiang
    • Structural Engineering and Mechanics
    • /
    • 제30권5호
    • /
    • pp.603-617
    • /
    • 2008
  • Three dimensional coupled bending-torsion dynamic vibrations of thin-walled open section beam subjected to moving vehicle are investigated by transfer matrix method. Through adopting the idea of Newmark-${\beta}$ method, the partial differential equations of structural vibration can be transformed to the differential equations. Then, those differential equations are solved by transfer matrix method. An iterative scheme is proposed to deal with the coupled bending-torsion terms in the governing vibration equations. The accuracy of the presented method is verified through two numerical examples. Finally, with different eccentricities of vehicle, the torsional vibration of thin-walled open section beam and vertical and rolling vibration of truck body are investigated. It can be concluded from the numerical results that the torsional vibration of beam and rolling vibration of vehicle increase with the eccentricity of vehicle. Moreover, it can be observed that the torsional vibration of thin-walled open section beam may have a significant nonlinear influence on vertical vibration of truck body.

Effect of rigid connection to an asymmetric building on the random seismic response

  • Taleshian, Hamed Ahmadi;Roshan, Alireza Mirzagoltabar;Amiri, Javad Vaseghi
    • Coupled systems mechanics
    • /
    • 제9권2호
    • /
    • pp.183-200
    • /
    • 2020
  • Connection of adjacent buildings with stiff links is an efficient approach for seismic pounding mitigation. However, use of highly rigid links might alter the torsional response in asymmetric plans and although this was mentioned in the literature, no quantitative study has been done before to investigate the condition numerically. In this paper, the effect of rigid coupling on the elastic lateral-torsional response of two adjacent one-story column-type buildings has been studied by comparison to uncoupled structures. Three cases are considered, including two similar asymmetric structures, two adjacent asymmetric structures with different dynamic properties and a symmetric system adjacent to an adjacent asymmetric one. After an acceptable validation against the actual earthquake, the traditional random vibration method has been utilized for dynamic analysis under Ideal white noise input. Results demonstrate that rigid coupling may increase or decrease the rotational response, depending on eccentricities, torsional-to-lateral stiffness ratios and relative uncoupled lateral stiffness of adjacent buildings. Results are also discussed for the case of using identical cross section for all columns supporting eachplan. In contrast to symmetric systems, base shear increase in the stiffer building may be avoided when the buildings lateral stiffness ratio is less than 2. However, the eccentricity increases the rotation of the plans for high rotational stiffness of the buildings.

마그네틱 커플링을 장착한 축계의 동적해석(I) (Dynamic analysis of spindle system with magnetic coupling(1))

  • Kim, S.K.;Lee, S.J.;Lee, J.M.
    • 한국정밀공학회지
    • /
    • 제11권4호
    • /
    • pp.99-105
    • /
    • 1994
  • In this study, the transverse and the torsional vibration analyses of a precision dynamic drive system with the magnetic coupling are accomplished. The force of the magnetic coupling is regarded as an equivalent transverse stiffness, which has a nonlinearity as a function of the gap and the eccentricity between a driver and a follower. Such an equivalent stiffness is calculated by and determined by the physical law and the calculated equivalent stiffness is modelled as the truss element. The form of the torque function transmitted through the magnetic coupling is a sinusoidal and such an equivalent angular stiffness, which represents the torque between a driver and a follower, is modelled as a nonlinear spring. The main spindle connected to a follower is assumed to a rigid body. And then finally we have the nonlinear partial differential equation with respect to the angular displacements. Through the procedure mentioned above, we accomplish the results of the torsional vibration analysis in a spindle system with the magnetic coupling.

  • PDF

Rotor dynamic analysis of a tidal turbine considering fluid-structure interaction under shear flow and waves

  • Lass, Andre;Schilling, Matti;Kumar, Jitendra;Wurm, Frank-Hendrik
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.154-164
    • /
    • 2019
  • A rotor dynamic analysis is mandatory for stability and design optimization of submerged propellers and turbines. An accurate simulation requires a proper consideration of fluid-induced reaction forces. This paper presents a bi-directional coupling of a bond graph method solver and an unsteady vortex lattice method solver where the former is used to model the rotor dynamics of the power train and the latter is used to predict transient hydrodynamic forces. Due to solver coupling, determination of hydrodynamic coefficients is obsolete and added mass effects are considered automatically. Additionally, power grid and structural faults like grid fluctuations, eccentricity or failure could be investigated using the same model. In this research work a fast, time resolved dynamic simulation of the complete power train is conducted. As an example, the rotor dynamics of a tidal stream turbine is investigated under two inflow conditions: I - shear flow, II - shear flow + water waves.

고속철도 교량의 동특성 해석을 위한 준3차원 차량/궤도/교량 상호작용 해석기법의 개발 (Development of a Quasi-Three Dimensional Train/Track/Bridge Interaction Analysis Program for Evaluating Dynamic Characteristics of High Speed Railway Bridges)

  • 김만철
    • 한국전산구조공학회논문집
    • /
    • 제16권2호
    • /
    • pp.141-151
    • /
    • 2003
  • 철도교량은 차량과 교량의 상호작용에 의해 유발되는 동하중을 받고 있다. 이러한 동적인 효과는 교량 각 부재에 충격과 피로를 유발하고, 교량의 잔존수명에 영향을 미치게 된다 따라서 수치적 또는 시험적 방법에 의한 교량의 실제적인 동적 거동을 분석하는 것이 매우 중요하다. 본 논문에서는 KTX 차량의 주행에 따른 교량의 동적 특성을 구조적 안전성, 주행 안전성 및 승차감 측면에서 평가할 수 있는 차량/궤도/교량 상호작용 해석프로그램을 개발하였다. 차량/궤도/교량의 실질적인 모델링을 위하여 차륜/레일 접촉 모델링을 위한 헤르찌안 스프링 및 도상에 대한 윈클러 요소를 적용하였다. 또한 개발 프로그램은 준3차원해석으로 차량의 복선제도 주행에 따른 3차원 편심 효과를 고려하기 위해 비톤 자유도 및 기하학적인 관계에 따른 제약조건식을 사용하였다. 개발프로그램의 검증을 위해서 고속철도교량중 가장 일반적인 형식인 PSC 박스교(2@40m=80m)에 대해 수치해석결과 및 계측시험 결과를 비교하였다.

홈이 회전하는 빗살무늬 저널 베어링의 안정성 해석 (Stability Analysis of a Herringbone Grooved Journal Bearing with Rotating Grooves)

  • 윤진욱;장건희
    • 한국소음진동공학회논문집
    • /
    • 제13권4호
    • /
    • pp.247-257
    • /
    • 2003
  • This paper presents an analytical method to Investigate the stability of a hydrodynamic journal bearing with rotating herringbone grooves. The dynamic coefficients of the hydrodynamic Journal bearing are calculated using the FEM and the perturbation method. The linear equations of motion can be represented as a parametrically excited system because the dynamic coefficients have time-varying components due to the rotating grooves, even in the steady state. Their solution can be assumed as a Fourier series expansion so that the equations of motion can be rewritten as simultaneous algebraic equations with respect to the Fourier coefficients. Then, stability can be determined by solving Hill's infinite determinant of these algebraic equations. The validity of this research is proved by the comparison of the stability chart with the time response of the whirl radius obtained from the equations of motion. This research shows that the instability of the hydrodynamic journal bearing with rotating herringbone grooves increases with increasing eccentricity and with decreasing groove number, which play the major roles in increasing the average and variation of stiffness coefficients, respectively. It also shows that a high rotational speed is another source of instability by increasing the stiffness coefficients without changing the damping coefficients.

Ratio of Torsion (ROT): An index for assessing the global induced torsion in plan irregular buildings

  • Stathi, Chrysanthi G.;Bakas, Nikolaos P.;Lagaros, Nikos D.;Papadrakakis, Manolis
    • Earthquakes and Structures
    • /
    • 제9권1호
    • /
    • pp.145-171
    • /
    • 2015
  • Due to earthquakes, many structures suffered extensive damages that were attributed to the torsional effect caused by mass, stiffness or strength eccentricity. Due to this type of asymmetry torsional moments are generated that are imposed by means of additional shear forces developed at the vertical resisting structural elements of the buildings. Although the torsional effect on the response of reinforced concrete buildings was the subject of extensive research over the last decades, a quantitative index measuring the amplification of the shear forces developed at the vertical resisting elements due to lateral-torsional coupling valid for both elastic and elastoplastic response states is still missing. In this study a reliable index capable of assessing the torsional effect is proposed. The performance of the proposed index is evaluated and its correlation with structural response quantities like displacements, interstorey drift, base torque, shear forces and upper diaphragm's rotation is presented. Torsionally stiff, mass eccentric single-story and multistory structures, subjected to bidirectional excitation, are considered and nonlinear dynamic analyses are performed using natural records selected for three hazard levels. It was found that the proposed index provides reliable prediction of the magnitude of torsional effect for all test examples considered.

타워를 포함한 6kW급 수직축 풍력발전기 구조진동해석 (Structure Dynamic Analysis of 6kW Class Vertical-Axis Wind Turbine with Tower)

  • 김동현;류경중;김요한;김성복;김광원;남효우;이명구
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.663-670
    • /
    • 2011
  • In this study, the design and verification of 6kW class lift-type vertical-axis wind turbine (VAWT) has been conducted using advanced CAE technique based on computational fluid dynamics (CFD), finite element method (FEM), and computational structural dynamics (CSD). Designed aerodynamic performance of the VAWT model is tested using unsteady CFD method. Designed structural safety is also tested through the evaluation of maximum induced stress level and resonance characteristics using FEM and CSD methods. It is importantly shown that the effect of master eccentricity due to rotational inertia needs to be carefully considered to additionally investigate dynamic stress and deformation level of the designed VAWT system.

  • PDF

홈이 회전하는 빗살무의 저널 베어링의 안정성 해석 (Stability Analysis of a Herringbone Grooved Journal Bearing with Rotating Grooves)

  • 윤진욱;장건희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.166-174
    • /
    • 2002
  • This paper presents an analytical method to Investigate the stability of a hydrodynamic journal bearing with rotating herringbone grooves. The dynamic coefficients of the hydrodynamic journal bearing are calculated using the FEM and the perturbation method. The linear equations of motion can be represented as a parametrically excited system because the dynamic coefficients have time-varying components due to the rotating grooves, even in the steady state. Their solution can be assumed as a Fourier series expansion so that the equations of motion can be rewritten as simultaneous algebraic equations with respect to the Fourier coefficients. Then, stability can be determined by solving Hill's infinite determinant of these algebraic equations. The validity of this research is proved by the comparison of the stability chart with the time response of the whirl radius obtained from the equations of motion. This research shows that the instability of the hydrodynamic journal bearing with rotating herringbone grooves increases with increasing eccentricity and with decreasing groove number, which play the major roles in increasing the average and variation of stiffness coefficients, respectively. It also shows that a high rotational speed is another source of instability by increasing the stiffness coefficients without changing the damping coefficients.

  • PDF