• Title/Summary/Keyword: dynamic eccentricity

Search Result 143, Processing Time 0.02 seconds

A Study on Identifying Dynamic Characteristic Parameters of Rotor Bearing Systems Using Field Measurement Data of Unbalance Responses (현장 불평형 응답을 이용한 로터-베어링 시스템의 매개변수 규명연구)

  • Lee, Dong-Hwan;Kim, Yeong-Il;Park, No-Gil
    • 연구논문집
    • /
    • s.29
    • /
    • pp.101-109
    • /
    • 1999
  • Presented in this paper is a new method of identifying the critical speed of rotor-bearing systems without actually reaching at the critical speed itself. Using the method, it is not only possible to calculate the critical speed by measuring a series of rotor responses at much lower rotating speeds away from and without reaching at the critical speeds but also the damping ratio and eccentricity of the system can be identified at the same time. Two types of test rotors were tested on the Rotor Dynamics Test Facility at the Rotordyn-amics Lab, KIMM, and the theory has been confirmed experimentally. The method can be adopted to monitor changes of the dynamic characteristics of critical rotating machinery before and after overhauls, repairs, exchanges of various parts, or to detect trends of direction of subtle changes in the dynamic characteristic parameters over a long periods of time.

  • PDF

Vibration Analysis of an Automatic Ball Balancer with Double Races (이중레이스를 갖는 자동평형장치의 진동해석)

  • Lee, Dong-Jin;Jeong, Jin-Tae;Hwang, Cheol-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1093-1102
    • /
    • 2000
  • Dynamic behaviors are analyzed for an automatic ball balancer with double races which is a device to reduce eccentricity of rotors. Equations of motion are derived by using the polar coordinate sys tem instead of the rectangular coordinate system which is used in other previous researches. To analyze the stability around equilibrium positions, the perturbation method is used. On the other hand, the time responses are computed from the nonlinear equations of motion by using a time integration method.

A Development of the Dynamic Absorber and Damper for Vibration and Noise Reduction of the Personal Computer (PC의 진동/소음 저감을 위한 쿨링홴의 동흡진장치 및 절연장치의 개발)

  • Jung, Won-Young;Lee, Kyu-Ho;Chung, Jin-Tai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.4
    • /
    • pp.339-345
    • /
    • 2011
  • The purpose of this study is reduction the vibration of the personal computer by developing the vibration absorber and damper. The eccentricity of the cooling fan causes the vibration of the computer. We designed the material properties of the vibration absorber and damper by FEM model within operation frequencies of the cooling fan. We experiment the overall analysis and system analysis by using a laser vibrometer. The result shows that the proposed dynamic absorber and damper reduce the vibration of the personal computer.

Exact dynamic stiffness matrix for a thin-walled beam-column of doubly asymmetric cross-section

  • Shirmohammadzade, A.;Rafezy, B.;Howson, W.P.
    • Structural Engineering and Mechanics
    • /
    • v.38 no.2
    • /
    • pp.195-210
    • /
    • 2011
  • Bernoulli-Euler beam theory is used to develop an exact dynamic stiffness matrix for the flexural-torsional coupled motion of a three-dimensional, axially loaded, thin-walled beam of doubly asymmetric cross-section. This is achieved through solution of the differential equations governing the motion of the beam including warping stiffness. The uniform distribution of mass in the member is also accounted for exactly, thus necessitating the solution of a transcendental eigenvalue problem. This is accomplished using the Wittrick-Williams algorithm. Finally, examples are given to confirm the accuracy of the theory presented, together with an assessment of the effects of axial load and loading eccentricity.

A Study on Identifying Dynamic Characteristic Parameters of Rotor Bearing Systems Using Field Measurement Data of Unbalance Responses (현장 불평형 응답을 이용한 로터-베어링 시스템의 매개변수 규명 연구)

  • Lee, Dong-Hwan;Kim, Paul-Y.;Park, Noh-Gil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.605-611
    • /
    • 2000
  • Presented in this paper is a new method of identifying the critical speed of rotor-bearing systems without actually reaching at the critical speed itself. Using the method, it is not only possible to calculate the critical speed by measuring a series of rotor responses at much lower rotating speeds away from and without reaching at the critical speeds but also the damping ratio and eccentricity of the system can be identified at the same time. Two types of test rotors were tested on the Rotor Dynamics Test Facility at the Rotordynamics Lab., KIMM, and the theory has been confirmed experimentally. The method can be adopted to monitor changes of the dynamic characteristics of critical rotating machinery before and after overhauls, repairs, exchanges of various parts, or to detect trends of direction of subtle changes in the dynamic characteristic parameters over a long periods of time.

  • PDF

Estimation of Pump Induced Vibration Force Using Transfer Function (전달함수를 이용한 펌프(50Hp)의 진동가진력 산정)

  • 노병철
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.157-162
    • /
    • 1998
  • Dynamic loads may arise from rotating parte of pump if they are insufficiently balanced. The magnitude of pump induced vibrations varies according to the weight, eccentricity, and unbalanced mass of pump. This is a study to estimate the pump induced vibration in time and frequency domain by transfer function. The transfer function has real and imaginary information of signals, and response function has also real and imaginary information. So the vibration force can be obtained from the response and transfer function by complex calculation. The amplitudes and components of 50Hp pump vibration force are suggested.

  • PDF

Problems in Seismic Design of High-Rise RC Building Structures having Irregularity (비정형 고층 RC 건축물의 내진설계 시 문제점)

  • 이한선;고동우
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.125-132
    • /
    • 2003
  • This paper clarifies the problems which structural engineers would have when the high-rise reinforced concrete building structures with vertical and plan irregularities are to be designed against earthquakes. The most important problems appear to be as follows: (1) ambiguity in defining the principal direction of the structure and the dynamic base shear, (2) the methodology how to account for the accidental eccentricity when the modal analysis should be conducted as required for the torsionally irregular structures, and (3) the choice of 100/30 and SRSS methods to take into account the effect of the critical direction of earthquake.

  • PDF

A Study on Hydrodynamic Stiffness Characteristics of Air Bearing for High Speed Spindle

  • Lee, J.Y.;Lee, D.W.;Seong, S.H.;Lee, Y.C.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.115-116
    • /
    • 2002
  • This study was carried out as one of efforts to overcome difficulties in air bearing design due to low stiffness and low damping. Hydrodynamic effects on hydrodynamic stiffness of a fluid film in a high speed air bearing with tow-row air sources are investigated. The hydrodynamic effects by the high speed over DN 1,000,000 and eccentricity of a proceeding which are not considered in conventional design of an air bearing need to be reconsidered. The hydrodynamic effects, which dominantly influence on the load capacity of air bearing, are caused mainly by proceeding speed, eccentricity, and the source positions. The two-row source arrangement in the air bearing produces quite unique hydrodynamic effects with respect to pressure distribution of the air film. Optimal arrangement of the two-row sources improves performance of an air bearing in film reaction force and loading capacity of high speed spindles. This study compares the pressure distribution by numerical simulation as a function of eccentricity of proceeding and the source positions. The air source position 1/7L form one end of an air bearing was found to be superior to source position of 1/4L. The dynamic stiffness were obtained using a two-dimensional cutting method which can directly measure the cutting reaction forces and the displacements of the spindle in two directions using a tool dynamometer and transducer sensors. Heat generation in the air film can not be negligible over the speed of DN 2,000,000. In order to analysis effects of heat generation on the characteristics of air bearing, high cooling bearing spindle and low cooling bearing spindle were tested and compared. Characteristics of the frequency response of shaft and motion of run out errors were different for the spindle. The test results show that, in the case of low cooling bearing spindle, the stiffness became smaller due to heat generation. The results, which were obtained for high speed region, may be used as a design information for spindle which can be applied to precision devices such as ultra precision grinding and ultra high speed milling.

  • PDF

A Study on the Relationship between the Eccentricity and the Level of Damage in the Seismic Response of Buildings with Plan Irregularities (지진 하중을 받는 평면 비정형 건물의 편심과 손상도의 상관관계에 대한 연구)

  • Jeong, Seoung-Hoon;Lee, Kwang-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.49-57
    • /
    • 2010
  • Most previous research on the seismic response of structures with plan irregularities have focused on the relationship between the eccentricity and the amount of torsion. This approach cannot provide the direct relationship between the irregularity and the damage. Therefore, an investigation on the relationship between the eccentricities of buildings with plan irregularities and the damage index was performed. Inelastic dynamic time-history analyses were performed on one-story buildings with various eccentricities. For the damage assessment, a 3D damage index was adopted to reflect the effect of the bi-directional response and torsion. Based on the analysis results, buildings with eccentricities of 10%, 20% and 30% will suffer 3~5%, 13~18%, and 33~47% more damage than their regular counterparts, respectively.

The effect of eccentricity between gear and housing in involute gear pump (인벌류트 기어펌프의 기어 편심에 따른 유동특성)

  • Kim, Sung-Hoon;Son, Hye-Min;Lee, Jae-Cheon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.631-637
    • /
    • 2013
  • The characteristics of involute gear pump with eccentric gap between gear tip and housing have been studied in terms of volumetric flow rate and/or flow efficiency. The analysis has been done with FLUENT/R-13 employing with k-e model for the turbulent flow under the given conditions of rotational velocity, gap distance and outlet pressure. The effect of parameters continues to be shown for the eccentric gear as same as for the concentric gear such that the volumetric flow rate (volumetric efficiency) increases as the increases of rotational velocity and decrease of gap distance and of outlet pressure. In the meantime, the shape of pressure build-up appears to be exponentially increase as gap distance decreases at upstream position. The pressure is rapidly developing in the upstream and remains almost constant thereafter in the downstream of circumferential flow path. This typical characteristics becomes more profound as eccentricity increases. The pump performance for the eccentric gear pump with minimum gap distance shows better than its concentric counterpart. However, it shows not for the concentric pump with minimum gap distance. Therefore, the gap reduction due to eccentricity may be positive for pump performance.