• Title/Summary/Keyword: dynamic earth pressure

Search Result 82, Processing Time 0.023 seconds

Analysis of Dynamic Earth Pressure Based on Zero Extension Line Theory (영팽창선이론(零膨脹線理論)에 의한 동적토압해석(動的土壓解析))

  • Shin, Dong Hoon;Hwang, Jung Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.5
    • /
    • pp.235-244
    • /
    • 1993
  • The present study was made based on the zero extension line theory and the well-known Mononobe-Okabe's to determine the dynamic earth pressures acting on the retaining walls. The zero extension line theory, which was proposed by Roscoe et al., assumes the coincidence between the loci of failure and the zero extension lines in soil mass. ln order to compute the dynamic earth pressure developed by an earthquake, it was assumed that for the vertical retaining walls with no surcharge, the backfill materials are dense and cohesionless sandy soils, there are no changes in soil parameters during earthquake, and the horizontal earthquake intensity is considered. The effects of horizontal earthquake intensity, internal friction angle of soil, wall friction angle and dilation angle, on the earth pressure coefficients were analysed. Final1y, the presented theories were successfully compared with the Mononobe-Okabe's as well.

  • PDF

Magnetopause Waves Controlling the Dynamics of Earth's Magnetosphere

  • Hwang, Kyoung-Joo
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • Earth's magnetopause separating the fast and often turbulent magnetosheath and the relatively stagnant magnetosphere provides various forms of free energy that generate low-frequency surface waves. The source mechanism of this energy includes current-driven kinetic physical processes such as magnetic reconnection on the dayside magnetopause and flux transfer events drifting along the magnetopause, and velocity shear-driven (Kelvin-Helmholtz instability) or density/pressure gradient-driven (Rayleigh-Taylor instability) magnetohydro-dynamics (MHD) instabilities. The solar wind external perturbations (impulsive transient pressure pulses or quasi-periodic dynamic pressure variations) act as seed fluctuations for the magnetopause waves and trigger ULF pulsations inside the magnetosphere via global modes or mode conversion at the magnetopause. The magnetopause waves thus play an important role in the solar wind-magnetosphere coupling, which is the key to space weather. This paper presents recent findings regarding the generation of surface waves (e.g., Kelvin-Helmholtz waves) at the Earth's magnetopause and analytic and observational studies accountable for the linking of the magnetopause waves and inner magnetospheric ULF pulsations, and the impacts of magnetopause waves on the dynamics of the magnetopause and on the inner magnetosphere.

Reliability Analysis of Caisson Type Quay wall Considering Phase Difference of Seismic Earth-Pressure (지진토압의 위상차를 고려한 케이슨 안벽의 신뢰성해석)

  • 김동현;윤길림;박우선
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.4
    • /
    • pp.242-248
    • /
    • 2003
  • For reliability analysis of caisson type quay walls, an approach to include the phase difference between the caisson motion and the dynamic earth pressure is proposed. Present approach. which uses the phase difference parameter, may over-estimate earth pressure. But the proposed approach considers the phase angle instead of the phase difference in estimating resultant external load. Therefore. it is more reasonable than the previous one. Accordingly, calculation of probability of failure becomes more accurate. Numerical example is used to compare the two approaches.

Effect of seismic acceleration directions on dynamic earth pressures in retaining structures

  • Nian, Ting-Kai;Liu, Bo;Han, Jie;Huang, Run-Qiu
    • Geomechanics and Engineering
    • /
    • v.7 no.3
    • /
    • pp.263-277
    • /
    • 2014
  • In the conventional design of retaining structures in a seismic zone, seismic inertia forces are commonly assumed to act upwards and towards the wall facing to cause a maximum active thrust or act upwards and towards the backfill to cause a minimum passive resistance. However, under certain circumstances this design approach might underestimate the dynamic active thrust or overestimate the dynamic passive resistance acting on a rigid retaining structure. In this study, a new analytical method for dynamic active and passive forces in c-${\phi}$ soils with an infinite slope was proposed based on the Rankine earth pressure theory and the Mohr-Coulomb yield criterion, to investigate the influence of seismic inertia force directions on the total active and passive forces. Four combinations of seismic acceleration with both vertical (upwards or downwards) and horizontal (towards the wall or backfill) directions, were considered. A series of dimensionless dynamic active and passive force charts were developed to evaluate the key influence factors, such as backfill inclination ${\beta}$, dimensionless cohesion $c/{\gamma}H$, friction angle ${\phi}$, horizontal and vertical seismic coefficients, $k _h$ and $k_v$. A comparative study shows that a combination of downward and towards-the-wall seismic inertia forces causes a maximum active thrust while a combination of upward and towards-the-wall seismic inertia forces causes a minimum passive resistance. This finding is recommended for use in the design of retaining structures in a seismic zone.

Lateral Pressure on Retaining Wall Close to Stable Slope (안정사면에 인접한 옹벽에 작용하는 수평토압)

  • Jeong, Seong-Gyo;Jeong, Jin-Gyo;Lee, Man-Ryeol
    • Geotechnical Engineering
    • /
    • v.13 no.5
    • /
    • pp.19-34
    • /
    • 1997
  • Classical earth pressure theories normally assume that ground condition remains uniform for considerable distance from the wall, and that the movement of the wall is enough to result in the development of an active pressure distribution. In the case of many low gravity walls in cut, constructed, for example, by using gabions or cribs, this is not commonly the case. In strong ground a steep temporary face will be excavated for reasons of economy, and a thin wedge of backfill will be placed behind the wall following its construetion. A designer then has the difficulty of selecting appropriate soil parameters and a reasonable method of calculating the earth pressure on the w리1. This paper starts by reviewing the existing solutions applicable to such geometry. A new silo and a wedge methods are developed for static and dynamic cases, and the results obtained from these are compared with two experimental results which more correctly mod el the geometry and strength of the wall, the fill, and the soil condition. Conclusions are drawn concerning both the magnitute and distribution of earth pressures to be supported by such walls.

  • PDF

Behavior Characteristics of Railway Roadbed Retained by Geosynthetic Reinforced Segmental Wall Under Train Load (열차 하중 작용 시 블록식 보강토 옹벽으로 지지된 철도 노반의 거동)

  • Lee, Seong Hyeok;Choi, Chan Yong;Lee, Jin Wook
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.5
    • /
    • pp.467-475
    • /
    • 2012
  • Static and dynamic train load tests were conducted to evaluate the train load transfer mechanism in the roadbed which was retained by two types (fully and partially) of segmental retaining walls reinforced by geogrid. The test roadbed was 2.6m high, 5m wide, and 6m long. A combination of earth pressure gages, displacement transducers, and strain gages were placed in specific locations to measure the responses. Test results showed that the wall displacement pattern as well as the earth pressure for the fully reinforced retaining wall was different from those for the partially reinforced retaining wall. In the dynamic train load test, the strain in the upper part of the wall tended to decrease, and both the residual deformation and the rate of the deformation were significantly lower than those in the current design standard.

Global MHD Simulation of the Earth's Magnetosphere Event on October, 1999

  • PARK KYUNG SUN;OGINO TATSUKI
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.4
    • /
    • pp.317-319
    • /
    • 2001
  • The response of the earth's magnetosphere to the variation of the solar wind parameters and Interplanetary magnetic field (IMF) has been stud}ed by using a high-resolution, three-dimension magnetohydrodynamic (MHD) simulation when the WIND data of velocity Vx, plasma density, dynamic pressure, By and Bz every 1 minute were used as input. Large electrojet and magnetic storm which occurred on October 21 and 22 are reproduced in the simulation (fig. 1). We have studied the energy transfer and tail reconnect ion in association with geomagnetic storms.

  • PDF

Assessment of traffic-induced low frequency sound radiated from a viaduct by field experiment

  • Kawatani, M.;Kim, C.W.;Nishitani, K.
    • Interaction and multiscale mechanics
    • /
    • v.3 no.4
    • /
    • pp.373-387
    • /
    • 2010
  • This study is intended to assess low frequency sound radiated from a viaduct under normal traffic. The bridge comprises steel box girders and wide cantilever decks on which vehicles pass. The low frequency sound and the acceleration response of the bridge under normal traffic are measured to investigate how bridge vibrations affect the low frequency sound observed near the bridge. Observations demonstrate that strong relationships exist between frequency characteristic of bridge's acceleration response and the sound pressure level of low frequency sound. A noteworthy point is that the dynamic feature of the sound pressure level is mostly affected by dynamic feature of the span locating near the observation point.

A Study on Dynamic Characteristics of Electrical Fire Prevention Control Devices with a lamp and a motor load (전등 부하 및 전동기 부하시 전기화재예방 제어장치의 동작 특성에 관한 연구)

  • Lee, Sang-Ho;Oh, Hong-Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.3
    • /
    • pp.255-260
    • /
    • 2002
  • Recently, the occurrences of electrical fire have been suppressed by an earth leakage breaker(ELB), a no fuse breaker(NFB) and a fuse in case of an earth leakage, a short circuit and an over current. But it is impossible for the ELB to break the circuit in the case of the failure of pressure contacts on connecting points and the momentary short circuit. Therefore, it is require to study the constructive problem of the ELB. In this paper, we have developed the auxiliary control device, electrical fire prevention control device(EFPCD), of the ELB. And we have tested the operation characteristics of the ELB according to the load(R, L) As a result of this experiment, we could prevent the electrical fire due to the spark and the overheat occurring in the failure of pressure contacts on connecting points and the momentary short circuit.

  • PDF

Long-Term Measurement under the Moving train at the Test Reinforced Roadbed Site in Railway (철도강화노반 시험부설구간에서의 열차 주행시 장기거동 계측)

  • 황선근;신민호;이성혁;최찬용;이시한
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.223-230
    • /
    • 2001
  • Nine different types of the reinforced railroad roadbeds which . are located in between Suwon-Chunan station of Kyongbu line were constructed in order to increase the bearing capacity of railroad roadbed and to improve the ridability as a part of speed-up project of conventional railroad systems. Each three sections were composed of weathered granite soil, crushed stone and furnace slag(HMS25), and fully instrumented with earth pressure cells, settlement plates and geophones to monitor the behavior of roadbeds under actual train loads. Field measurement has continued since October 31, 2000 and presently with rather longer measurement interval. The measurement data such as settlement, earth pressure and vibration levels are currently under analysis process. In this paper, only cumulative measurement data of railroad roadbeds were introduced. In the near future, comprehensive measurement data and result of analysis will be presented and design technique for the reinforced railroad roadbed will be proposed as a final product of this study.

  • PDF